2017-03-26 21:51:40 +03:00
|
|
|
# coding: utf8
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import gzip
|
|
|
|
import math
|
|
|
|
from ast import literal_eval
|
|
|
|
from preshed.counter import PreshCounter
|
|
|
|
|
2017-03-26 21:56:05 +03:00
|
|
|
from ..vocab import write_binary_vectors
|
2017-05-08 00:25:29 +03:00
|
|
|
from ..compat import fix_text, path2str
|
|
|
|
from ..util import prints
|
2017-03-26 21:51:40 +03:00
|
|
|
from .. import util
|
|
|
|
|
|
|
|
|
|
|
|
def model(lang, model_dir, freqs_data, clusters_data, vectors_data):
|
2017-05-08 00:25:29 +03:00
|
|
|
model_path = util.ensure_path(model_dir)
|
|
|
|
freqs_path = util.ensure_path(freqs_data)
|
|
|
|
clusters_path = util.ensure_path(clusters_data)
|
|
|
|
vectors_path = util.ensure_path(vectors_data)
|
|
|
|
if not freqs_path.is_file():
|
|
|
|
prints(freqs_path, title="No frequencies file found", exits=True)
|
|
|
|
if clusters_path and not clusters_path.is_file():
|
|
|
|
prints(clusters_path, title="No Brown clusters file found", exits=True)
|
|
|
|
if vectors_path and not vectors_path.is_file():
|
|
|
|
prints(vectors_path, title="No word vectors file found", exits=True)
|
2017-03-26 21:51:40 +03:00
|
|
|
vocab = util.get_lang_class(lang).Defaults.create_vocab()
|
|
|
|
probs, oov_prob = read_probs(freqs_path)
|
|
|
|
clusters = read_clusters(clusters_path) if clusters_path else {}
|
|
|
|
populate_vocab(vocab, clusters, probs, oov_prob)
|
|
|
|
create_model(model_path, vectors_path, vocab, oov_prob)
|
|
|
|
|
|
|
|
|
|
|
|
def create_model(model_path, vectors_path, vocab, oov_prob):
|
|
|
|
vocab_path = model_path / 'vocab'
|
|
|
|
lexemes_path = vocab_path / 'lexemes.bin'
|
|
|
|
strings_path = vocab_path / 'strings.json'
|
|
|
|
oov_path = vocab_path / 'oov_prob'
|
|
|
|
|
|
|
|
if not model_path.exists():
|
|
|
|
model_path.mkdir()
|
|
|
|
if not vocab_path.exists():
|
|
|
|
vocab_path.mkdir()
|
2017-05-08 00:25:29 +03:00
|
|
|
vocab.dump(path2str(lexemes_path))
|
2017-03-26 21:51:40 +03:00
|
|
|
with strings_path.open('w') as f:
|
|
|
|
vocab.strings.dump(f)
|
|
|
|
with oov_path.open('w') as f:
|
|
|
|
f.write('%f' % oov_prob)
|
|
|
|
if vectors_path:
|
2017-04-20 14:34:51 +03:00
|
|
|
vectors_dest = vocab_path / 'vec.bin'
|
2017-05-08 00:25:29 +03:00
|
|
|
write_binary_vectors(path2str(vectors_path), path2str(vectors_dest))
|
2017-03-26 21:51:40 +03:00
|
|
|
|
|
|
|
|
|
|
|
def read_probs(freqs_path, max_length=100, min_doc_freq=5, min_freq=200):
|
|
|
|
counts = PreshCounter()
|
|
|
|
total = 0
|
|
|
|
freqs_file = check_unzip(freqs_path)
|
|
|
|
for i, line in enumerate(freqs_file):
|
|
|
|
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
|
|
|
freq = int(freq)
|
|
|
|
counts.inc(i+1, freq)
|
|
|
|
total += freq
|
|
|
|
counts.smooth()
|
|
|
|
log_total = math.log(total)
|
|
|
|
freqs_file = check_unzip(freqs_path)
|
|
|
|
probs = {}
|
|
|
|
for line in freqs_file:
|
|
|
|
freq, doc_freq, key = line.rstrip().split('\t', 2)
|
|
|
|
doc_freq = int(doc_freq)
|
|
|
|
freq = int(freq)
|
|
|
|
if doc_freq >= min_doc_freq and freq >= min_freq and len(key) < max_length:
|
|
|
|
word = literal_eval(key)
|
|
|
|
smooth_count = counts.smoother(int(freq))
|
|
|
|
probs[word] = math.log(smooth_count) - log_total
|
|
|
|
oov_prob = math.log(counts.smoother(0)) - log_total
|
|
|
|
return probs, oov_prob
|
|
|
|
|
|
|
|
|
|
|
|
def read_clusters(clusters_path):
|
|
|
|
clusters = {}
|
|
|
|
with clusters_path.open() as f:
|
|
|
|
for line in f:
|
|
|
|
try:
|
|
|
|
cluster, word, freq = line.split()
|
2017-04-20 16:47:17 +03:00
|
|
|
word = fix_text(word)
|
2017-03-26 21:51:40 +03:00
|
|
|
except ValueError:
|
|
|
|
continue
|
|
|
|
# If the clusterer has only seen the word a few times, its
|
|
|
|
# cluster is unreliable.
|
|
|
|
if int(freq) >= 3:
|
|
|
|
clusters[word] = cluster
|
|
|
|
else:
|
|
|
|
clusters[word] = '0'
|
|
|
|
# Expand clusters with re-casing
|
|
|
|
for word, cluster in list(clusters.items()):
|
|
|
|
if word.lower() not in clusters:
|
|
|
|
clusters[word.lower()] = cluster
|
|
|
|
if word.title() not in clusters:
|
|
|
|
clusters[word.title()] = cluster
|
|
|
|
if word.upper() not in clusters:
|
|
|
|
clusters[word.upper()] = cluster
|
|
|
|
return clusters
|
|
|
|
|
|
|
|
|
2017-04-13 16:24:14 +03:00
|
|
|
def populate_vocab(vocab, clusters, probs, oov_prob):
|
2017-03-26 21:51:40 +03:00
|
|
|
for word, prob in reversed(sorted(list(probs.items()), key=lambda item: item[1])):
|
|
|
|
lexeme = vocab[word]
|
|
|
|
lexeme.prob = prob
|
|
|
|
lexeme.is_oov = False
|
|
|
|
# Decode as a little-endian string, so that we can do & 15 to get
|
|
|
|
# the first 4 bits. See _parse_features.pyx
|
|
|
|
if word in clusters:
|
|
|
|
lexeme.cluster = int(clusters[word][::-1], 2)
|
|
|
|
else:
|
|
|
|
lexeme.cluster = 0
|
|
|
|
|
|
|
|
|
|
|
|
def check_unzip(file_path):
|
2017-05-08 00:25:29 +03:00
|
|
|
file_path_str = path2str(file_path)
|
2017-03-26 21:51:40 +03:00
|
|
|
if file_path_str.endswith('gz'):
|
|
|
|
return gzip.open(file_path_str)
|
|
|
|
else:
|
|
|
|
return file_path.open()
|