spaCy/spacy/cli/convert.py

203 lines
7.1 KiB
Python
Raw Normal View History

2017-04-13 14:51:54 +03:00
from pathlib import Path
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
from wasabi import Printer
import srsly
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
import re
2020-06-20 04:50:13 +03:00
import sys
2017-04-07 14:04:17 +03:00
2020-06-20 16:55:35 +03:00
from ..tokens import DocBin
from ..gold.converters import iob2docs, conll_ner2docs, json2docs
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
2017-04-07 14:04:17 +03:00
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
# Converters are matched by file extension except for ner/iob, which are
# matched by file extension and content. To add a converter, add a new
2017-10-27 15:38:39 +03:00
# entry to this dict with the file extension mapped to the converter function
# imported from /converters.
2020-06-20 04:50:13 +03:00
2020-06-20 16:55:35 +03:00
CONVERTERS = {
#"conllubio": conllu2docs, TODO
#"conllu": conllu2docs, TODO
#"conll": conllu2docs, TODO
"ner": conll_ner2docs,
"iob": iob2docs,
2020-06-20 04:50:13 +03:00
"json": json2docs,
2017-04-07 14:04:17 +03:00
}
2020-06-20 04:50:13 +03:00
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
# File types
FILE_TYPES = ("json", "jsonl", "msg")
FILE_TYPES_STDOUT = ("json", "jsonl")
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
2017-04-07 14:04:17 +03:00
def convert(
# fmt: off
2020-06-20 16:55:35 +03:00
input_path: ("Input file or directory", "positional", None, Path),
output_dir: ("Output directory.", "positional", None, Path),
file_type: (f"Type of data to produce: {FILE_TYPES}", "option", "t", str, FILE_TYPES) = "spacy",
n_sents: ("Number of sentences per doc (0 to disable)", "option", "n", int) = 1,
seg_sents: ("Segment sentences (for -c ner)", "flag", "s") = False,
model: ("Model for sentence segmentation (for -s)", "option", "b", str) = None,
morphology: ("Enable appending morphology to tags", "flag", "m", bool) = False,
Add convert CLI option to merge CoNLL-U subtokens (#4722) * Add convert CLI option to merge CoNLL-U subtokens Add `-T` option to convert CLI that merges CoNLL-U subtokens into one token in the converted data. Each CoNLL-U sentence is read into a `Doc` and the `Retokenizer` is used to merge subtokens with features as follows: * `orth` is the merged token orth (should correspond to raw text and `# text`) * `tag` is all subtoken tags concatenated with `_`, e.g. `ADP_DET` * `pos` is the POS of the syntactic root of the span (as determined by the Retokenizer) * `morph` is all morphological features merged * `lemma` is all subtoken lemmas concatenated with ` `, e.g. `de o` * with `-m` all morphological features are combined with the tag using the separator `__`, e.g. `ADP_DET__Definite=Def|Gender=Masc|Number=Sing|PronType=Art` * `dep` is the dependency relation for the syntactic root of the span (as determined by the Retokenizer) Concatenated tags will be mapped to the UD POS of the syntactic root (e.g., `ADP`) and the morphological features will be the combined features. In many cases, the original UD subtokens can be reconstructed from the available features given a language-specific lookup table, e.g., Portuguese `do / ADP_DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` is `de / ADP`, `o / DET / Definite=Def|Gender=Masc|Number=Sing|PronType=Art` or lookup rules for forms containing open class words like Spanish `hablarlo / VERB_PRON / Case=Acc|Gender=Masc|Number=Sing|Person=3|PrepCase=Npr|PronType=Prs|VerbForm=Inf`. * Clean up imports
2020-01-29 19:44:25 +03:00
merge_subtokens: ("Merge CoNLL-U subtokens", "flag", "T", bool) = False,
converter: (f"Converter: {tuple(CONVERTERS.keys())}", "option", "c", str) = "auto",
2020-06-20 16:55:35 +03:00
ner_map: ("NER tag mapping (as JSON-encoded dict of entity types)", "option", "N", Path) = None,
lang: ("Language (if tokenizer required)", "option", "l", str) = None,
# fmt: on
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
):
"""
2020-06-20 16:55:35 +03:00
Convert files into json or DocBin format for use with train command and other
experiment management functions.
"""
2020-06-20 16:55:35 +03:00
cli_args = locals()
2019-10-24 17:21:08 +03:00
no_print = output_dir == "-"
2020-06-20 16:55:35 +03:00
output_dir = Path(output_dir) if output_dir != "-" else "-"
msg = Printer(no_print=no_print)
2020-06-20 16:55:35 +03:00
verify_cli_args(msg, **cli_args)
converter = _get_converter(msg, converter, input_path)
ner_map = srsly.read_json(ner_map) if ner_map is not None else None
for input_loc in walk_directory(input_path):
input_data = input_loc.open("r", encoding="utf-8").read()
# Use converter function to convert data
func = CONVERTERS[converter]
docs = func(
input_data,
n_sents=n_sents,
seg_sents=seg_sents,
append_morphology=morphology,
merge_subtokens=merge_subtokens,
lang=lang,
model=model,
no_print=no_print,
ner_map=ner_map,
)
suffix = f".{file_type}"
subpath = input_loc.relative_to(input_path)
output_file = (output_dir / subpath).with_suffix(suffix)
if not output_file.parent.exists():
output_file.parent.mkdir(parents=True)
if file_type == "json":
data = docs2json(docs)
srsly.write_json(output_file, docs2json(docs))
else:
2020-06-20 17:00:14 +03:00
data = DocBin(docs=docs).to_bytes()
2020-06-20 16:55:35 +03:00
with output_file.open("wb") as file_:
file_.write(data)
msg.good(f"Generated output file ({len(docs)} documents): {output_file}")
def autodetect_ner_format(input_data):
# guess format from the first 20 lines
lines = input_data.split("\n")[:20]
format_guesses = {"ner": 0, "iob": 0}
iob_re = re.compile(r"\S+\|(O|[IB]-\S+)")
ner_re = re.compile(r"\S+\s+(O|[IB]-\S+)$")
for line in lines:
line = line.strip()
if iob_re.search(line):
format_guesses["iob"] += 1
if ner_re.search(line):
format_guesses["ner"] += 1
if format_guesses["iob"] == 0 and format_guesses["ner"] > 0:
return "ner"
if format_guesses["ner"] == 0 and format_guesses["iob"] > 0:
return "iob"
return None
def walk_directory(path):
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
else:
locs.append(path)
return locs
def verify_cli_args(
msg,
input_path,
output_dir,
file_type,
n_sents,
seg_sents,
model,
morphology,
merge_subtokens,
converter,
ner_map,
lang
):
if converter == "ner" or converter == "iob":
input_data = input_path.open("r", encoding="utf-8").read()
converter_autodetect = autodetect_ner_format(input_data)
if converter_autodetect == "ner":
msg.info("Auto-detected token-per-line NER format")
converter = converter_autodetect
elif converter_autodetect == "iob":
msg.info("Auto-detected sentence-per-line NER format")
converter = converter_autodetect
else:
msg.warn(
"Can't automatically detect NER format. Conversion may not",
"succeed. See https://spacy.io/api/cli#convert"
)
if file_type not in FILE_TYPES_STDOUT and output_dir == "-":
# TODO: support msgpack via stdout in srsly?
msg.fail(
f"Can't write .{file_type} data to stdout",
"Please specify an output directory.",
exits=1,
)
2017-05-08 00:25:29 +03:00
if not input_path.exists():
msg.fail("Input file not found", input_path, exits=1)
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
if output_dir != "-" and not Path(output_dir).exists():
msg.fail("Output directory not found", output_dir, exits=1)
2020-06-20 16:55:35 +03:00
if input_path.is_dir():
input_locs = walk_directory(input_path)
if len(input_locs) == 0:
msg.fail("No input files in directory", input_path, exits=1)
file_types = list(set([loc.suffix[1:] for loc in input_locs]))
if len(file_types) >= 2:
file_types = ",".join(file_types)
msg.fail("All input files must be same type", file_types, exits=1)
if converter == "auto":
converter = file_types[0]
else:
converter = input_path.suffix[1:]
if converter not in CONVERTERS:
msg.fail(f"Can't find converter for {converter}", exits=1)
return converter
def _get_converter(msg, converter, input_path):
if input_path.is_dir():
input_path = walk_directory(input_path)[0]
💫 New JSON helpers, training data internals & CLI rewrite (#2932) * Support nowrap setting in util.prints * Tidy up and fix whitespace * Simplify script and use read_jsonl helper * Add JSON schemas (see #2928) * Deprecate Doc.print_tree Will be replaced with Doc.to_json, which will produce a unified format * Add Doc.to_json() method (see #2928) Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space. * Remove outdated test * Add write_json and write_jsonl helpers * WIP: Update spacy train * Tidy up spacy train * WIP: Use wasabi for formatting * Add GoldParse helpers for JSON format * WIP: add debug-data command * Fix typo * Add missing import * Update wasabi pin * Add missing import * 💫 Refactor CLI (#2943) To be merged into #2932. ## Description - [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi) - [x] use [`black`](https://github.com/ambv/black) for auto-formatting - [x] add `flake8` config - [x] move all messy UD-related scripts to `cli.ud` - [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO) ### Types of change enhancement ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information. * Update wasabi pin * Delete old test * Update errors * Fix typo * Tidy up and format remaining code * Fix formatting * Improve formatting of messages * Auto-format remaining code * Add tok2vec stuff to spacy.train * Fix typo * Update wasabi pin * Fix path checks for when train() is called as function * Reformat and tidy up pretrain script * Update argument annotations * Raise error if model language doesn't match lang * Document new train command
2018-11-30 22:16:14 +03:00
if converter == "auto":
2017-10-10 04:06:28 +03:00
converter = input_path.suffix[1:]
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
if converter == "ner" or converter == "iob":
2020-06-20 16:55:35 +03:00
with input_path.open() as file_:
input_data = file_.read()
Updates/bugfixes for NER/IOB converters (#4186) * Updates/bugfixes for NER/IOB converters * Converter formats `ner` and `iob` use autodetect to choose a converter if possible * `iob2json` is reverted to handle sentence-per-line data like `word1|pos1|ent1 word2|pos2|ent2` * Fix bug in `merge_sentences()` so the second sentence in each batch isn't skipped * `conll_ner2json` is made more general so it can handle more formats with whitespace-separated columns * Supports all formats where the first column is the token and the final column is the IOB tag; if present, the second column is the POS tag * As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O` separates documents * Add option for segmenting sentences (new flag `-s`) * Parser-based sentence segmentation with a provided model, otherwise with sentencizer (new option `-b` to specify model) * Can group sentences into documents with `n_sents` as long as sentence segmentation is available * Only applies automatic segmentation when there are no existing delimiters in the data * Provide info about settings applied during conversion with warnings and suggestions if settings conflict or might not be not optimal. * Add tests for common formats * Add '(default)' back to docs for -c auto * Add document count back to output * Revert changes to converter output message * Use explicit tabs in convert CLI test data * Adjust/add messages for n_sents=1 default * Add sample NER data to training examples * Update README * Add links in docs to example NER data * Define msg within converters
2019-08-29 13:04:01 +03:00
converter_autodetect = autodetect_ner_format(input_data)
if converter_autodetect == "ner":
msg.info("Auto-detected token-per-line NER format")
converter = converter_autodetect
elif converter_autodetect == "iob":
msg.info("Auto-detected sentence-per-line NER format")
converter = converter_autodetect
else:
2019-08-31 14:39:06 +03:00
msg.warn(
2020-06-20 16:55:35 +03:00
"Can't automatically detect NER format. "
"Conversion may not succeed. "
"See https://spacy.io/api/cli#convert"
2019-08-31 14:39:06 +03:00
)
2020-06-20 16:55:35 +03:00
return converter