spaCy/spacy/tests/regression/test_issue4042.py

81 lines
2.4 KiB
Python
Raw Normal View History

import spacy
from spacy.pipeline import EntityRecognizer, EntityRuler
from spacy.lang.en import English
from spacy.tokens import Span
from spacy.util import ensure_path
from spacy.pipeline.defaults import default_ner
2019-09-29 18:34:56 +03:00
from ..util import make_tempdir
def test_issue4042():
"""Test that serialization of an EntityRuler before NER works fine."""
nlp = English()
# add ner pipe
ner = nlp.create_pipe("ner")
ner.add_label("SOME_LABEL")
nlp.add_pipe(ner)
nlp.begin_training()
# Add entity ruler
ruler = EntityRuler(nlp)
patterns = [
{"label": "MY_ORG", "pattern": "Apple"},
{"label": "MY_GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]},
]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler, before="ner") # works fine with "after"
doc1 = nlp("What do you think about Apple ?")
assert doc1.ents[0].label_ == "MY_ORG"
with make_tempdir() as d:
output_dir = ensure_path(d)
if not output_dir.exists():
output_dir.mkdir()
nlp.to_disk(output_dir)
nlp2 = spacy.load(output_dir)
doc2 = nlp2("What do you think about Apple ?")
assert doc2.ents[0].label_ == "MY_ORG"
def test_issue4042_bug2():
"""
Test that serialization of an NER works fine when new labels were added.
This is the second bug of two bugs underlying the issue 4042.
"""
nlp1 = English()
vocab = nlp1.vocab
# add ner pipe
ner1 = nlp1.create_pipe("ner")
ner1.add_label("SOME_LABEL")
nlp1.add_pipe(ner1)
nlp1.begin_training()
# add a new label to the doc
doc1 = nlp1("What do you think about Apple ?")
assert len(ner1.labels) == 1
assert "SOME_LABEL" in ner1.labels
apple_ent = Span(doc1, 5, 6, label="MY_ORG")
doc1.ents = list(doc1.ents) + [apple_ent]
# reapply the NER - at this point it should resize itself
ner1(doc1)
assert len(ner1.labels) == 2
assert "SOME_LABEL" in ner1.labels
assert "MY_ORG" in ner1.labels
with make_tempdir() as d:
# assert IO goes fine
output_dir = ensure_path(d)
if not output_dir.exists():
output_dir.mkdir()
ner1.to_disk(output_dir)
config = {"learn_tokens": False, "min_action_freq": 30, "beam_width": 1, "beam_update_prob": 1.0}
ner2 = EntityRecognizer(vocab, default_ner(), **config)
ner2.from_disk(output_dir)
assert len(ner2.labels) == 2