mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
152 lines
5.0 KiB
Python
152 lines
5.0 KiB
Python
|
import plac
|
||
|
import json
|
||
|
from os import path
|
||
|
import shutil
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
from spacy.syntax.util import Config
|
||
|
from spacy.gold import GoldParse
|
||
|
from spacy.tokenizer import Tokenizer
|
||
|
from spacy.vocab import Vocab
|
||
|
from spacy.tagger import Tagger
|
||
|
from spacy.syntax.parser import Parser
|
||
|
from spacy.syntax.arc_eager import ArcEager
|
||
|
from spacy.syntax.parser import get_templates
|
||
|
from spacy.scorer import Scorer
|
||
|
|
||
|
from spacy.language import Language
|
||
|
|
||
|
from spacy.tagger import W_orth
|
||
|
|
||
|
TAGGER_TEMPLATES = (
|
||
|
(W_orth,),
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
from codecs import open
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class TreebankParser(object):
|
||
|
@staticmethod
|
||
|
def setup_model_dir(model_dir, labels, templates, feat_set='basic', seed=0):
|
||
|
dep_model_dir = path.join(model_dir, 'deps')
|
||
|
pos_model_dir = path.join(model_dir, 'pos')
|
||
|
if path.exists(dep_model_dir):
|
||
|
shutil.rmtree(dep_model_dir)
|
||
|
if path.exists(pos_model_dir):
|
||
|
shutil.rmtree(pos_model_dir)
|
||
|
os.mkdir(dep_model_dir)
|
||
|
os.mkdir(pos_model_dir)
|
||
|
|
||
|
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
|
||
|
labels=labels)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dir(cls, tag_map, model_dir):
|
||
|
vocab = Vocab(tag_map=tag_map, get_lex_attr=Language.default_lex_attrs())
|
||
|
tokenizer = Tokenizer(vocab, {}, None, None, None)
|
||
|
tagger = Tagger.blank(vocab, TAGGER_TEMPLATES)
|
||
|
|
||
|
cfg = Config.read(path.join(model_dir, 'deps'), 'config')
|
||
|
parser = Parser.from_dir(path.join(model_dir, 'deps'), vocab.strings, ArcEager)
|
||
|
return cls(vocab, tokenizer, tagger, parser)
|
||
|
|
||
|
def __init__(self, vocab, tokenizer, tagger, parser):
|
||
|
self.vocab = vocab
|
||
|
self.tokenizer = tokenizer
|
||
|
self.tagger = tagger
|
||
|
self.parser = parser
|
||
|
|
||
|
def train(self, words, tags, heads, deps):
|
||
|
tokens = self.tokenizer.tokens_from_list(list(words))
|
||
|
self.tagger.train(tokens, tags)
|
||
|
|
||
|
tokens = self.tokenizer.tokens_from_list(list(words))
|
||
|
ids = range(len(words))
|
||
|
ner = ['O'] * len(words)
|
||
|
gold = GoldParse(tokens, ((ids, words, tags, heads, deps, ner)),
|
||
|
make_projective=False)
|
||
|
self.tagger(tokens)
|
||
|
if gold.is_projective:
|
||
|
try:
|
||
|
self.parser.train(tokens, gold)
|
||
|
except:
|
||
|
for id_, word, head, dep in zip(ids, words, heads, deps):
|
||
|
print(id_, word, head, dep)
|
||
|
raise
|
||
|
|
||
|
def __call__(self, words, tags=None):
|
||
|
tokens = self.tokenizer.tokens_from_list(list(words))
|
||
|
if tags is None:
|
||
|
self.tagger(tokens)
|
||
|
else:
|
||
|
self.tagger.tag_from_strings(tokens, tags)
|
||
|
self.parser(tokens)
|
||
|
return tokens
|
||
|
|
||
|
def end_training(self, data_dir):
|
||
|
self.parser.model.end_training(path.join(data_dir, 'deps', 'model'))
|
||
|
self.tagger.model.end_training(path.join(data_dir, 'pos', 'model'))
|
||
|
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
|
||
|
|
||
|
|
||
|
def read_conllx(loc):
|
||
|
with open(loc, 'r', 'utf8') as file_:
|
||
|
text = file_.read()
|
||
|
for sent in text.strip().split('\n\n'):
|
||
|
lines = sent.strip().split('\n')
|
||
|
if lines:
|
||
|
if lines[0].startswith('#'):
|
||
|
lines.pop(0)
|
||
|
tokens = []
|
||
|
for line in lines:
|
||
|
id_, word, lemma, pos, tag, morph, head, dep, _1, _2 = line.split()
|
||
|
if '-' in id_:
|
||
|
continue
|
||
|
id_ = int(id_) - 1
|
||
|
head = (int(head) - 1) if head != '0' else id_
|
||
|
dep = 'ROOT' if dep == 'root' else dep
|
||
|
tokens.append((id_, word, tag, head, dep, 'O'))
|
||
|
tuples = zip(*tokens)
|
||
|
yield (None, [(tuples, [])])
|
||
|
|
||
|
|
||
|
def score_model(nlp, gold_docs, verbose=False):
|
||
|
scorer = Scorer()
|
||
|
for _, gold_doc in gold_docs:
|
||
|
for annot_tuples, _ in gold_doc:
|
||
|
tokens = nlp(list(annot_tuples[1]), tags=list(annot_tuples[2]))
|
||
|
gold = GoldParse(tokens, annot_tuples)
|
||
|
scorer.score(tokens, gold, verbose=verbose)
|
||
|
return scorer
|
||
|
|
||
|
|
||
|
def main(train_loc, dev_loc, model_dir, tag_map_loc):
|
||
|
with open(tag_map_loc) as file_:
|
||
|
tag_map = json.loads(file_.read())
|
||
|
train_sents = list(read_conllx(train_loc))
|
||
|
labels = ArcEager.get_labels(train_sents)
|
||
|
templates = get_templates('basic')
|
||
|
|
||
|
TreebankParser.setup_model_dir(model_dir, labels, templates)
|
||
|
|
||
|
nlp = TreebankParser.from_dir(tag_map, model_dir)
|
||
|
|
||
|
for itn in range(15):
|
||
|
for _, doc_sents in train_sents:
|
||
|
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
|
||
|
nlp.train(words, tags, heads, deps)
|
||
|
random.shuffle(train_sents)
|
||
|
scorer = score_model(nlp, read_conllx(dev_loc))
|
||
|
print('%d:\t%.3f\t%.3f' % (itn, scorer.uas, scorer.tags_acc))
|
||
|
nlp.end_training(model_dir)
|
||
|
scorer = score_model(nlp, read_conllx(dev_loc))
|
||
|
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
plac.call(main)
|