mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-08 07:30:34 +03:00
49 lines
1.5 KiB
Python
49 lines
1.5 KiB
Python
|
"""Parameter Server distributed training with Ray."""
|
||
|
|
||
|
import ray
|
||
|
from wasabi import msg
|
||
|
from .. import util
|
||
|
|
||
|
class OptimizerWorker:
|
||
|
def __init__(self, config_path):
|
||
|
self.optimizer = _create_optimizer(config_path)
|
||
|
self.weights_dict = {}
|
||
|
|
||
|
def call(self, key, weights, gradient, *, lr_scale=1.0):
|
||
|
if key not in self.weights_dict:
|
||
|
self.weights_dict[key] = weights.copy()
|
||
|
new_weights, new_grads = self.optimizer(
|
||
|
key, self.weights_dict[key], gradient.copy(), lr_scale=lr_scale)
|
||
|
self.weights_dict[key] = new_weights
|
||
|
return new_weights, new_grads
|
||
|
|
||
|
def fetch(self):
|
||
|
return self.optimizer
|
||
|
|
||
|
def step_schedules(self):
|
||
|
self.optimizer.step_schedules()
|
||
|
|
||
|
class RayOptimizer:
|
||
|
local_optimizer = None
|
||
|
|
||
|
def __init__(self, config_path, use_gpu):
|
||
|
RemoteOptimizer = ray.remote(OptimizerWorker)
|
||
|
if use_gpu >= 0:
|
||
|
RemoteOptimizer = RemoteOptimizer.options(num_gpus=0.1)
|
||
|
self.optimizer = RemoteOptimizer.remote(config_path)
|
||
|
self.sync()
|
||
|
|
||
|
def sync(self):
|
||
|
self.local_optimizer = ray.get(self.optimizer.fetch.remote())
|
||
|
|
||
|
def __call__(self, *args, **kwargs):
|
||
|
weights, grads = ray.get(self.optimizer.call.remote(*args, **kwargs))
|
||
|
return weights.copy(), grads.copy()
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
return getattr(self.local_optimizer, name)
|
||
|
|
||
|
def step_schedules(self):
|
||
|
self.optimizer.step_schedules.remote()
|
||
|
self.sync()
|