mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
174 lines
6.3 KiB
Cython
174 lines
6.3 KiB
Cython
|
# cython: infer_types=True, profile=True, binding=True
|
|||
|
import srsly
|
|||
|
from typing import Optional, List
|
|||
|
|
|||
|
from ..tokens.doc cimport Doc
|
|||
|
|
|||
|
from .pipe import Pipe
|
|||
|
from ..language import Language
|
|||
|
from .. import util
|
|||
|
|
|||
|
|
|||
|
@Language.factory(
|
|||
|
"sentencizer",
|
|||
|
assigns=["token.is_sent_start", "doc.sents"],
|
|||
|
default_config={"punct_chars": None}
|
|||
|
)
|
|||
|
def make_sentencizer(
|
|||
|
nlp: Language,
|
|||
|
name: str,
|
|||
|
punct_chars: Optional[List[str]]
|
|||
|
):
|
|||
|
return Sentencizer(name, punct_chars=punct_chars)
|
|||
|
|
|||
|
|
|||
|
class Sentencizer(Pipe):
|
|||
|
"""Segment the Doc into sentences using a rule-based strategy.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer
|
|||
|
"""
|
|||
|
|
|||
|
default_punct_chars = ['!', '.', '?', '։', '؟', '۔', '܀', '܁', '܂', '߹',
|
|||
|
'।', '॥', '၊', '။', '።', '፧', '፨', '᙮', '᜵', '᜶', '᠃', '᠉', '᥄',
|
|||
|
'᥅', '᪨', '᪩', '᪪', '᪫', '᭚', '᭛', '᭞', '᭟', '᰻', '᰼', '᱾', '᱿',
|
|||
|
'‼', '‽', '⁇', '⁈', '⁉', '⸮', '⸼', '꓿', '꘎', '꘏', '꛳', '꛷', '꡶',
|
|||
|
'꡷', '꣎', '꣏', '꤯', '꧈', '꧉', '꩝', '꩞', '꩟', '꫰', '꫱', '꯫', '﹒',
|
|||
|
'﹖', '﹗', '!', '.', '?', '𐩖', '𐩗', '𑁇', '𑁈', '𑂾', '𑂿', '𑃀',
|
|||
|
'𑃁', '𑅁', '𑅂', '𑅃', '𑇅', '𑇆', '𑇍', '𑇞', '𑇟', '𑈸', '𑈹', '𑈻', '𑈼',
|
|||
|
'𑊩', '𑑋', '𑑌', '𑗂', '𑗃', '𑗉', '𑗊', '𑗋', '𑗌', '𑗍', '𑗎', '𑗏', '𑗐',
|
|||
|
'𑗑', '𑗒', '𑗓', '𑗔', '𑗕', '𑗖', '𑗗', '𑙁', '𑙂', '𑜼', '𑜽', '𑜾', '𑩂',
|
|||
|
'𑩃', '𑪛', '𑪜', '𑱁', '𑱂', '𖩮', '𖩯', '𖫵', '𖬷', '𖬸', '𖭄', '𛲟', '𝪈',
|
|||
|
'。', '。']
|
|||
|
|
|||
|
def __init__(self, name="sentencizer", *, punct_chars):
|
|||
|
"""Initialize the sentencizer.
|
|||
|
|
|||
|
punct_chars (list): Punctuation characters to split on. Will be
|
|||
|
serialized with the nlp object.
|
|||
|
RETURNS (Sentencizer): The sentencizer component.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#init
|
|||
|
"""
|
|||
|
self.name = name
|
|||
|
if punct_chars:
|
|||
|
self.punct_chars = set(punct_chars)
|
|||
|
else:
|
|||
|
self.punct_chars = set(self.default_punct_chars)
|
|||
|
|
|||
|
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
|||
|
pass
|
|||
|
|
|||
|
def __call__(self, doc):
|
|||
|
"""Apply the sentencizer to a Doc and set Token.is_sent_start.
|
|||
|
|
|||
|
example (Doc or Example): The document to process.
|
|||
|
RETURNS (Doc or Example): The processed Doc or Example.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#call
|
|||
|
"""
|
|||
|
start = 0
|
|||
|
seen_period = False
|
|||
|
for i, token in enumerate(doc):
|
|||
|
is_in_punct_chars = token.text in self.punct_chars
|
|||
|
token.is_sent_start = i == 0
|
|||
|
if seen_period and not token.is_punct and not is_in_punct_chars:
|
|||
|
doc[start].is_sent_start = True
|
|||
|
start = token.i
|
|||
|
seen_period = False
|
|||
|
elif is_in_punct_chars:
|
|||
|
seen_period = True
|
|||
|
if start < len(doc):
|
|||
|
doc[start].is_sent_start = True
|
|||
|
return doc
|
|||
|
|
|||
|
def pipe(self, stream, batch_size=128):
|
|||
|
for docs in util.minibatch(stream, size=batch_size):
|
|||
|
predictions = self.predict(docs)
|
|||
|
self.set_annotations(docs, predictions)
|
|||
|
yield from docs
|
|||
|
|
|||
|
def predict(self, docs):
|
|||
|
"""Apply the pipeline's model to a batch of docs, without
|
|||
|
modifying them.
|
|||
|
"""
|
|||
|
if not any(len(doc) for doc in docs):
|
|||
|
# Handle cases where there are no tokens in any docs.
|
|||
|
guesses = [[] for doc in docs]
|
|||
|
return guesses
|
|||
|
guesses = []
|
|||
|
for doc in docs:
|
|||
|
doc_guesses = [False] * len(doc)
|
|||
|
if len(doc) > 0:
|
|||
|
start = 0
|
|||
|
seen_period = False
|
|||
|
doc_guesses[0] = True
|
|||
|
for i, token in enumerate(doc):
|
|||
|
is_in_punct_chars = token.text in self.punct_chars
|
|||
|
if seen_period and not token.is_punct and not is_in_punct_chars:
|
|||
|
doc_guesses[start] = True
|
|||
|
start = token.i
|
|||
|
seen_period = False
|
|||
|
elif is_in_punct_chars:
|
|||
|
seen_period = True
|
|||
|
if start < len(doc):
|
|||
|
doc_guesses[start] = True
|
|||
|
guesses.append(doc_guesses)
|
|||
|
return guesses
|
|||
|
|
|||
|
def set_annotations(self, docs, batch_tag_ids):
|
|||
|
if isinstance(docs, Doc):
|
|||
|
docs = [docs]
|
|||
|
cdef Doc doc
|
|||
|
cdef int idx = 0
|
|||
|
for i, doc in enumerate(docs):
|
|||
|
doc_tag_ids = batch_tag_ids[i]
|
|||
|
for j, tag_id in enumerate(doc_tag_ids):
|
|||
|
# Don't clobber existing sentence boundaries
|
|||
|
if doc.c[j].sent_start == 0:
|
|||
|
if tag_id:
|
|||
|
doc.c[j].sent_start = 1
|
|||
|
else:
|
|||
|
doc.c[j].sent_start = -1
|
|||
|
|
|||
|
def to_bytes(self, exclude=tuple()):
|
|||
|
"""Serialize the sentencizer to a bytestring.
|
|||
|
|
|||
|
RETURNS (bytes): The serialized object.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#to_bytes
|
|||
|
"""
|
|||
|
return srsly.msgpack_dumps({"punct_chars": list(self.punct_chars)})
|
|||
|
|
|||
|
def from_bytes(self, bytes_data, exclude=tuple()):
|
|||
|
"""Load the sentencizer from a bytestring.
|
|||
|
|
|||
|
bytes_data (bytes): The data to load.
|
|||
|
returns (Sentencizer): The loaded object.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#from_bytes
|
|||
|
"""
|
|||
|
cfg = srsly.msgpack_loads(bytes_data)
|
|||
|
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
|
|||
|
return self
|
|||
|
|
|||
|
def to_disk(self, path, exclude=tuple()):
|
|||
|
"""Serialize the sentencizer to disk.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#to_disk
|
|||
|
"""
|
|||
|
path = util.ensure_path(path)
|
|||
|
path = path.with_suffix(".json")
|
|||
|
srsly.write_json(path, {"punct_chars": list(self.punct_chars)})
|
|||
|
|
|||
|
|
|||
|
def from_disk(self, path, exclude=tuple()):
|
|||
|
"""Load the sentencizer from disk.
|
|||
|
|
|||
|
DOCS: https://spacy.io/api/sentencizer#from_disk
|
|||
|
"""
|
|||
|
path = util.ensure_path(path)
|
|||
|
path = path.with_suffix(".json")
|
|||
|
cfg = srsly.read_json(path)
|
|||
|
self.punct_chars = set(cfg.get("punct_chars", self.default_punct_chars))
|
|||
|
return self
|