spaCy/spacy/pipeline/entityruler.py

199 lines
7.7 KiB
Python
Raw Normal View History

# coding: utf8
from __future__ import unicode_literals
from collections import defaultdict
import srsly
from ..errors import Errors
from ..compat import basestring_
from ..util import ensure_path
from ..tokens import Span
from ..matcher import Matcher, PhraseMatcher
class EntityRuler(object):
"""The EntityRuler lets you add spans to the `Doc.ents` using token-based
rules or exact phrase matches. It can be combined with the statistical
`EntityRecognizer` to boost accuracy, or used on its own to implement a
purely rule-based entity recognition system. After initialization, the
component is typically added to the pipeline using `nlp.add_pipe`.
DOCS: https://spacy.io/api/entityruler
USAGE: https://spacy.io/usage/rule-based-matching#entityruler
"""
name = "entity_ruler"
def __init__(self, nlp, **cfg):
"""Initialize the entitiy ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
patterns (iterable): Optional patterns to load in.
overwrite_ents (bool): If existing entities are present, e.g. entities
added by the model, overwrite them by matches if necessary.
**cfg: Other config parameters. If pipeline component is loaded as part
of a model pipeline, this will include all keyword arguments passed
to `spacy.load`.
RETURNS (EntityRuler): The newly constructed object.
DOCS: https://spacy.io/api/entityruler#init
"""
self.nlp = nlp
self.overwrite = cfg.get("overwrite_ents", False)
self.token_patterns = defaultdict(list)
self.phrase_patterns = defaultdict(list)
self.matcher = Matcher(nlp.vocab)
self.phrase_matcher = PhraseMatcher(nlp.vocab)
patterns = cfg.get("patterns")
if patterns is not None:
self.add_patterns(patterns)
def __len__(self):
"""The number of all patterns added to the entity ruler."""
n_token_patterns = sum(len(p) for p in self.token_patterns.values())
n_phrase_patterns = sum(len(p) for p in self.phrase_patterns.values())
return n_token_patterns + n_phrase_patterns
def __contains__(self, label):
"""Whether a label is present in the patterns."""
return label in self.token_patterns or label in self.phrase_patterns
def __call__(self, doc):
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/entityruler#call
"""
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
matches = set(
[(m_id, start, end) for m_id, start, end in matches if start != end]
)
get_sort_key = lambda m: (m[2] - m[1], m[1])
matches = sorted(matches, key=get_sort_key, reverse=True)
entities = list(doc.ents)
new_entities = []
seen_tokens = set()
for match_id, start, end in matches:
if any(t.ent_type for t in doc[start:end]) and not self.overwrite:
continue
# check for end - 1 here because boundaries are inclusive
if start not in seen_tokens and end - 1 not in seen_tokens:
new_entities.append(Span(doc, start, end, label=match_id))
entities = [
e for e in entities if not (e.start < end and e.end > start)
]
seen_tokens.update(range(start, end))
doc.ents = entities + new_entities
return doc
@property
def labels(self):
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/entityruler#labels
"""
all_labels = set(self.token_patterns.keys())
all_labels.update(self.phrase_patterns.keys())
return tuple(all_labels)
@property
def patterns(self):
"""Get all patterns that were added to the entity ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/entityruler#patterns
"""
all_patterns = []
for label, patterns in self.token_patterns.items():
for pattern in patterns:
all_patterns.append({"label": label, "pattern": pattern})
for label, patterns in self.phrase_patterns.items():
for pattern in patterns:
all_patterns.append({"label": label, "pattern": pattern.text})
return all_patterns
def add_patterns(self, patterns):
"""Add patterns to the entitiy ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/entityruler#add_patterns
"""
for entry in patterns:
label = entry["label"]
pattern = entry["pattern"]
if isinstance(pattern, basestring_):
self.phrase_patterns[label].append(self.nlp(pattern))
elif isinstance(pattern, list):
self.token_patterns[label].append(pattern)
else:
raise ValueError(Errors.E097.format(pattern=pattern))
for label, patterns in self.token_patterns.items():
self.matcher.add(label, None, *patterns)
for label, patterns in self.phrase_patterns.items():
self.phrase_matcher.add(label, None, *patterns)
def from_bytes(self, patterns_bytes, **kwargs):
"""Load the entity ruler from a bytestring.
patterns_bytes (bytes): The bytestring to load.
**kwargs: Other config paramters, mostly for consistency.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_bytes
"""
patterns = srsly.msgpack_loads(patterns_bytes)
self.add_patterns(patterns)
return self
def to_bytes(self, **kwargs):
"""Serialize the entity ruler patterns to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/entityruler#to_bytes
"""
return srsly.msgpack_dumps(self.patterns)
def from_disk(self, path, **kwargs):
"""Load the entity ruler from a file. Expects a file containing
newline-delimited JSON (JSONL) with one entry per line.
path (unicode / Path): The JSONL file to load.
**kwargs: Other config paramters, mostly for consistency.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler#from_disk
"""
path = ensure_path(path)
path = path.with_suffix(".jsonl")
patterns = srsly.read_jsonl(path)
self.add_patterns(patterns)
return self
def to_disk(self, path, **kwargs):
"""Save the entity ruler patterns to a directory. The patterns will be
saved as newline-delimited JSON (JSONL).
path (unicode / Path): The JSONL file to load.
**kwargs: Other config paramters, mostly for consistency.
RETURNS (EntityRuler): The loaded entity ruler.
DOCS: https://spacy.io/api/entityruler
"""
path = ensure_path(path)
path = path.with_suffix(".jsonl")
srsly.write_jsonl(path, self.patterns)