spaCy/spacy/tokens/doc.pyx

460 lines
16 KiB
Cython
Raw Normal View History

cimport cython
from libc.string cimport memcpy, memset
from libc.stdint cimport uint32_t
import numpy
import struct
from ..lexeme cimport EMPTY_LEXEME
from ..typedefs cimport attr_t, flags_t
from ..attrs cimport attr_id_t
from ..attrs cimport ID, ORTH, NORM, LOWER, SHAPE, PREFIX, SUFFIX, LENGTH, CLUSTER
from ..attrs cimport POS, LEMMA, TAG, DEP, HEAD, SPACY, ENT_IOB, ENT_TYPE
from ..parts_of_speech import UNIV_POS_NAMES
from ..parts_of_speech cimport CONJ, PUNCT, NOUN
from ..lexeme cimport check_flag
from ..lexeme cimport get_attr as get_lex_attr
from .spans cimport Span
from .token cimport Token
from ..serialize.bits cimport BitArray
DEF PADDING = 5
cdef int bounds_check(int i, int length, int padding) except -1:
if (i + padding) < 0:
raise IndexError
if (i - padding) >= length:
raise IndexError
cdef attr_t get_token_attr(const TokenC* token, attr_id_t feat_name) nogil:
if feat_name == LEMMA:
return token.lemma
elif feat_name == POS:
return token.pos
elif feat_name == TAG:
return token.tag
elif feat_name == DEP:
return token.dep
elif feat_name == HEAD:
return token.head
elif feat_name == SPACY:
return token.spacy
elif feat_name == ENT_IOB:
return token.ent_iob
elif feat_name == ENT_TYPE:
return token.ent_type
else:
return get_lex_attr(token.lex, feat_name)
cdef class Doc:
"""
Container class for annotated text. Constructed via English.__call__ or
Tokenizer.__call__.
"""
def __init__(self, Vocab vocab, orths_and_spaces=None):
self.vocab = vocab
size = 20
self.mem = Pool()
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
# However, we need to remember the true starting places, so that we can
# realloc.
data_start = <TokenC*>self.mem.alloc(size + (PADDING*2), sizeof(TokenC))
cdef int i
for i in range(size + (PADDING*2)):
data_start[i].lex = &EMPTY_LEXEME
self.data = data_start + PADDING
self.max_length = size
self.length = 0
self.is_tagged = False
self.is_parsed = False
self._py_tokens = []
2015-07-17 17:39:54 +03:00
def __getitem__(self, object i):
"""Get a token.
Returns:
token (Token):
"""
if isinstance(i, slice):
if i.step is not None:
raise ValueError("Stepped slices not supported in Span objects."
"Try: list(doc)[start:stop:step] instead.")
return Span(self, i.start, i.stop, label=0)
if i < 0:
i = self.length + i
bounds_check(i, self.length, PADDING)
if self._py_tokens[i] is not None:
return self._py_tokens[i]
else:
return Token.cinit(self.vocab, &self.data[i], i, self)
def __iter__(self):
"""Iterate over the tokens.
Yields:
token (Token):
"""
cdef int i
for i in range(self.length):
if self._py_tokens[i] is not None:
yield self._py_tokens[i]
else:
yield Token.cinit(self.vocab, &self.data[i], i, self)
def __len__(self):
return self.length
def __unicode__(self):
return u''.join([t.string for t in self])
2015-07-24 04:49:30 +03:00
def __str__(self):
return u''.join([t.string for t in self])
@property
def string(self):
2015-07-24 04:49:30 +03:00
return u''.join([t.string for t in self])
property ents:
def __get__(self):
"""Yields named-entity Span objects.
Iterate over the span to get individual Token objects, or access the label:
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp(u'Mr. Best flew to New York on Saturday morning.')
>>> ents = list(tokens.ents)
>>> ents[0].label, ents[0].label_, ''.join(t.orth_ for t in ents[0])
(112504, u'PERSON', u'Best ')
"""
cdef int i
cdef const TokenC* token
cdef int start = -1
cdef int label = 0
output = []
for i in range(self.length):
token = &self.data[i]
if token.ent_iob == 1:
assert start != -1
elif token.ent_iob == 2 or token.ent_iob == 0:
if start != -1:
output.append(Span(self, start, i, label=label))
start = -1
label = 0
elif token.ent_iob == 3:
if start != -1:
output.append(Span(self, start, i, label=label))
start = i
label = token.ent_type
if start != -1:
output.append(Span(self, start, self.length, label=label))
return tuple(output)
def __set__(self, ents):
# TODO:
# 1. Allow negative matches
# 2. Ensure pre-set NERs are not over-written during statistical prediction
# 3. Test basic data-driven ORTH gazetteer
# 4. Test more nuanced date and currency regex
cdef int i
for i in range(self.length):
self.data[i].ent_type = 0
self.data[i].ent_iob = 0
cdef attr_t ent_type
cdef int start, end
for ent_type, start, end in ents:
2015-08-06 18:28:43 +03:00
if ent_type is None or ent_type < 0:
# Mark as O
for i in range(start, end):
self.data[i].ent_type = 0
self.data[i].ent_iob = 2
else:
# Mark (inside) as I
for i in range(start, end):
self.data[i].ent_type = ent_type
self.data[i].ent_iob = 1
# Set start as B
self.data[start].ent_iob = 3
@property
def noun_chunks(self):
"""Yield spans for base noun phrases."""
cdef const TokenC* word
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'attr']
np_deps = [self.vocab.strings[label] for label in labels]
np_label = self.vocab.strings['NP']
for i in range(self.length):
word = &self.data[i]
if word.pos == NOUN and word.dep in np_deps:
yield Span(self, word.l_edge, i+1, label=np_label)
@property
def sents(self):
"""
Yield a list of sentence Span objects, calculated from the dependency parse.
"""
cdef int i
start = 0
for i in range(1, self.length):
if self.data[i].sent_start:
yield Span(self, start, i)
start = i
yield Span(self, start, self.length)
cdef int push_back(self, LexemeOrToken lex_or_tok, bint has_space) except -1:
if self.length == self.max_length:
self._realloc(self.length * 2)
cdef TokenC* t = &self.data[self.length]
if LexemeOrToken is TokenC_ptr:
t[0] = lex_or_tok[0]
else:
t.lex = lex_or_tok
if self.length == 0:
t.idx = 0
else:
t.idx = (t-1).idx + (t-1).lex.length + (t-1).spacy
t.spacy = has_space
self.length += 1
self._py_tokens.append(None)
return t.idx + t.lex.length + t.spacy
@cython.boundscheck(False)
cpdef np.ndarray to_array(self, object py_attr_ids):
"""Given a list of M attribute IDs, export the tokens to a numpy ndarray
of shape N*M, where N is the length of the sentence.
Arguments:
attr_ids (list[int]): A list of attribute ID ints.
Returns:
feat_array (numpy.ndarray[long, ndim=2]):
A feature matrix, with one row per word, and one column per attribute
indicated in the input attr_ids.
"""
cdef int i, j
cdef attr_id_t feature
cdef np.ndarray[attr_t, ndim=2] output
# Make an array from the attributes --- otherwise our inner loop is Python
# dict iteration.
cdef np.ndarray[attr_t, ndim=1] attr_ids = numpy.asarray(py_attr_ids, dtype=numpy.int32)
output = numpy.ndarray(shape=(self.length, len(attr_ids)), dtype=numpy.int32)
for i in range(self.length):
for j, feature in enumerate(attr_ids):
output[i, j] = get_token_attr(&self.data[i], feature)
return output
2015-07-14 04:20:09 +03:00
def count_by(self, attr_id_t attr_id, exclude=None, PreshCounter counts=None):
"""Produce a dict of {attribute (int): count (ints)} frequencies, keyed
by the values of the given attribute ID.
>>> from spacy.en import English, attrs
>>> nlp = English()
>>> tokens = nlp(u'apple apple orange banana')
>>> tokens.count_by(attrs.ORTH)
{12800L: 1, 11880L: 2, 7561L: 1}
>>> tokens.to_array([attrs.ORTH])
array([[11880],
[11880],
[ 7561],
[12800]])
"""
cdef int i
cdef attr_t attr
cdef size_t count
2015-07-14 04:20:09 +03:00
if counts is None:
counts = PreshCounter(self.length)
output_dict = True
else:
output_dict = False
# Take this check out of the loop, for a bit of extra speed
if exclude is None:
for i in range(self.length):
attr = get_token_attr(&self.data[i], attr_id)
counts.inc(attr, 1)
else:
for i in range(self.length):
if not exclude(self[i]):
attr = get_token_attr(&self.data[i], attr_id)
counts.inc(attr, 1)
if output_dict:
return dict(counts)
def _realloc(self, new_size):
self.max_length = new_size
n = new_size + (PADDING * 2)
# What we're storing is a "padded" array. We've jumped forward PADDING
# places, and are storing the pointer to that. This way, we can access
# words out-of-bounds, and get out-of-bounds markers.
# Now that we want to realloc, we need the address of the true start,
# so we jump the pointer back PADDING places.
cdef TokenC* data_start = self.data - PADDING
data_start = <TokenC*>self.mem.realloc(data_start, n * sizeof(TokenC))
self.data = data_start + PADDING
cdef int i
for i in range(self.length, self.max_length + PADDING):
self.data[i].lex = &EMPTY_LEXEME
cdef int set_parse(self, const TokenC* parsed) except -1:
# TODO: This method is fairly misleading atm. It's used by Parser
# to actually apply the parse calculated. Need to rethink this.
# Probably we should use from_array?
self.is_parsed = True
for i in range(self.length):
self.data[i] = parsed[i]
def from_array(self, attrs, array):
cdef int i, col
cdef attr_id_t attr_id
cdef TokenC* tokens = self.data
cdef int length = len(array)
cdef attr_t[:] values
for col, attr_id in enumerate(attrs):
values = array[:, col]
if attr_id == HEAD:
for i in range(length):
tokens[i].head = values[i]
if values[i] >= 1:
tokens[i + values[i]].l_kids += 1
elif values[i] < 0:
tokens[i + values[i]].r_kids += 1
elif attr_id == TAG:
for i in range(length):
tokens[i].tag = values[i]
elif attr_id == DEP:
for i in range(length):
tokens[i].dep = values[i]
elif attr_id == ENT_IOB:
for i in range(length):
tokens[i].ent_iob = values[i]
elif attr_id == ENT_TYPE:
for i in range(length):
tokens[i].ent_type = values[i]
set_children_from_heads(self.data, self.length)
return self
def to_bytes(self):
2015-07-23 02:14:45 +03:00
byte_string = self.vocab.serializer.pack(self)
cdef uint32_t length = len(byte_string)
return struct.pack('I', length) + byte_string
def from_bytes(self, data):
2015-07-23 02:14:45 +03:00
self.vocab.serializer.unpack_into(data[4:], self)
return self
@staticmethod
def read_bytes(file_):
keep_reading = True
while keep_reading:
try:
2015-07-23 02:14:45 +03:00
n_bytes_str = file_.read(4)
if len(n_bytes_str) < 4:
break
2015-07-23 02:14:45 +03:00
n_bytes = struct.unpack('I', n_bytes_str)[0]
data = file_.read(n_bytes)
except StopIteration:
keep_reading = False
2015-07-23 02:14:45 +03:00
yield n_bytes_str + data
# This function is terrible --- need to fix this.
def merge(self, int start_idx, int end_idx, unicode tag, unicode lemma,
unicode ent_type):
"""Merge a multi-word expression into a single token. Currently
experimental; API is likely to change."""
cdef int i
cdef int start = -1
cdef int end = -1
for i in range(self.length):
if self.data[i].idx == start_idx:
start = i
if (self.data[i].idx + self.data[i].lex.length) == end_idx:
if start == -1:
return None
end = i + 1
break
else:
return None
cdef Span span = self[start:end]
# Get LexemeC for newly merged token
new_orth = ''.join([t.string for t in span])
if span[-1].whitespace_:
new_orth = new_orth[:-1]
cdef const LexemeC* lex = self.vocab.get(self.mem, new_orth)
# House the new merged token where it starts
cdef TokenC* token = &self.data[start]
# Update fields
token.lex = lex
2015-07-30 05:25:58 +03:00
token.spacy = self.data[end].spacy
# What to do about morphology??
# TODO: token.morph = ???
token.tag = self.vocab.strings[tag]
token.lemma = self.vocab.strings[lemma]
if ent_type == 'O':
token.ent_iob = 2
token.ent_type = 0
else:
token.ent_iob = 3
token.ent_type = self.vocab.strings[ent_type]
# Begin by setting all the head indices to absolute token positions
# This is easier to work with for now than the offsets
# Before thinking of something simpler, beware the case where a dependency
# bridges over the entity. Here the alignment of the tokens changes.
span_root = span.root.i
token.dep = span.root.dep
for i in range(self.length):
self.data[i].head += i
# Set the head of the merged token, and its dep relation, from the Span
token.head = self.data[span_root].head
# Adjust deps before shrinking tokens
# Tokens which point into the merged token should now point to it
# Subtract the offset from all tokens which point to >= end
offset = (end - start) - 1
for i in range(self.length):
head_idx = self.data[i].head
if start <= head_idx < end:
self.data[i].head = start
elif head_idx >= end:
self.data[i].head -= offset
# Now compress the token array
for i in range(end, self.length):
self.data[i - offset] = self.data[i]
for i in range(self.length - offset, self.length):
memset(&self.data[i], 0, sizeof(TokenC))
self.data[i].lex = &EMPTY_LEXEME
self.length -= offset
for i in range(self.length):
# ...And, set heads back to a relative position
self.data[i].head -= i
# Set the left/right children, left/right edges
set_children_from_heads(self.data, self.length)
# Clear the cached Python objects
self._py_tokens = [None] * self.length
# Return the merged Python object
return self[start]
cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
cdef TokenC* head
cdef TokenC* child
cdef int i
# Set left edges
for i in range(length):
child = &tokens[i]
head = &tokens[i + child.head]
if child < head and child.l_edge < head.l_edge:
head.l_edge = child.l_edge
# Set right edges --- same as above, but iterate in reverse
for i in range(length-1, -1, -1):
child = &tokens[i]
head = &tokens[i + child.head]
if child > head and child.r_edge > head.r_edge:
head.r_edge = child.r_edge