spaCy/examples/training/train_textcat.py

114 lines
3.7 KiB
Python
Raw Normal View History

2017-10-04 15:55:30 +03:00
'''Train a multi-label convolutional neural network text classifier,
using the spacy.pipeline.TextCategorizer component. The model is then added
to spacy.pipeline, and predictions are available at `doc.cats`.
'''
from __future__ import unicode_literals
import plac
import random
import tqdm
from thinc.neural.optimizers import Adam
from thinc.neural.ops import NumpyOps
import thinc.extra.datasets
import spacy.lang.en
from spacy.gold import GoldParse, minibatch
from spacy.util import compounding
from spacy.pipeline import TextCategorizer
def train_textcat(tokenizer, textcat,
train_texts, train_cats, dev_texts, dev_cats,
n_iter=20):
'''
Train the TextCategorizer without associated pipeline.
'''
textcat.begin_training()
optimizer = Adam(NumpyOps(), 0.001)
train_docs = [tokenizer(text) for text in train_texts]
train_gold = [GoldParse(doc, cats=cats) for doc, cats in
zip(train_docs, train_cats)]
train_data = zip(train_docs, train_gold)
batch_sizes = compounding(4., 128., 1.001)
for i in range(n_iter):
losses = {}
2017-07-29 22:59:27 +03:00
train_data = tqdm.tqdm(train_data, leave=False) # Progress bar
for batch in minibatch(train_data, size=batch_sizes):
docs, golds = zip(*batch)
2017-10-04 15:55:30 +03:00
textcat.update(docs, golds, sgd=optimizer, drop=0.2,
losses=losses)
with textcat.model.use_params(optimizer.averages):
scores = evaluate(tokenizer, textcat, dev_texts, dev_cats)
yield losses['textcat'], scores
def evaluate(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 1e-8 # True positives
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 1e-8 # True negatives
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if score >= 0.5 and label in gold:
tp += 1.
elif score >= 0.5 and label not in gold:
fp += 1.
elif score < 0.5 and label not in gold:
tn += 1
if score < 0.5 and label in gold:
fn += 1
precis = tp / (tp + fp)
recall = tp / (tp + fn)
fscore = 2 * (precis * recall) / (precis + recall)
return {'textcat_p': precis, 'textcat_r': recall, 'textcat_f': fscore}
def load_data():
# Partition off part of the train data --- avoid running experiments
# against test.
train_data, _ = thinc.extra.datasets.imdb()
random.shuffle(train_data)
texts, labels = zip(*train_data)
cats = [(['POSITIVE'] if y else []) for y in labels]
2017-07-29 22:59:27 +03:00
split = int(len(train_data) * 0.8)
train_texts = texts[:split]
train_cats = cats[:split]
dev_texts = texts[split:]
dev_cats = cats[split:]
return (train_texts, train_cats), (dev_texts, dev_cats)
2017-07-23 01:34:12 +03:00
def main(model_loc=None):
nlp = spacy.lang.en.English()
tokenizer = nlp.tokenizer
textcat = TextCategorizer(tokenizer.vocab, labels=['POSITIVE'])
print("Load IMDB data")
(train_texts, train_cats), (dev_texts, dev_cats) = load_data()
2017-07-23 01:34:12 +03:00
print("Itn.\tLoss\tP\tR\tF")
progress = '{i:d} {loss:.3f} {textcat_p:.3f} {textcat_r:.3f} {textcat_f:.3f}'
for i, (loss, scores) in enumerate(train_textcat(tokenizer, textcat,
train_texts, train_cats,
dev_texts, dev_cats, n_iter=20)):
print(progress.format(i=i, loss=loss, **scores))
2017-07-23 01:34:12 +03:00
# How to save, load and use
nlp.pipeline.append(textcat)
if model_loc is not None:
nlp.to_disk(model_loc)
nlp = spacy.load(model_loc)
doc = nlp(u'This movie sucked!')
print(doc.cats)
if __name__ == '__main__':
plac.call(main)