mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
178 lines
5.2 KiB
Plaintext
178 lines
5.2 KiB
Plaintext
|
//- 💫 DOCS > USAGE > LIGHTNING TOUR
|
||
|
|
||
|
include ../../_includes/_mixins
|
||
|
|
||
|
p
|
||
|
| The following examples code snippets give you an overview of spaCy's
|
||
|
| functionality and its usage.
|
||
|
|
||
|
+h(2, "examples-resources") Load resources and process text
|
||
|
|
||
|
+code.
|
||
|
import spacy
|
||
|
en_nlp = spacy.load('en')
|
||
|
de_nlp = spacy.load('de')
|
||
|
en_doc = en_nlp(u'Hello, world. Here are two sentences.')
|
||
|
de_doc = de_nlp(u'ich bin ein Berliner.')
|
||
|
|
||
|
+h(2, "multi-threaded") Multi-threaded generator
|
||
|
|
||
|
+code.
|
||
|
texts = [u'One document.', u'...', u'Lots of documents']
|
||
|
# .pipe streams input, and produces streaming output
|
||
|
iter_texts = (texts[i % 3] for i in xrange(100000000))
|
||
|
for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=4)):
|
||
|
assert doc.is_parsed
|
||
|
if i == 100:
|
||
|
break
|
||
|
|
||
|
+h(2, "examples-tokens-sentences") Get tokens and sentences
|
||
|
|
||
|
+code.
|
||
|
token = doc[0]
|
||
|
sentence = next(doc.sents)
|
||
|
assert token is sentence[0]
|
||
|
assert sentence.text == 'Hello, world.'
|
||
|
|
||
|
+h(2, "examples-integer-ids") Use integer IDs for any string
|
||
|
|
||
|
+code.
|
||
|
hello_id = nlp.vocab.strings['Hello']
|
||
|
hello_str = nlp.vocab.strings[hello_id]
|
||
|
|
||
|
assert token.orth == hello_id == 3125
|
||
|
assert token.orth_ == hello_str == 'Hello'
|
||
|
|
||
|
+h(2, "examples-string-views-flags") Get and set string views and flags
|
||
|
|
||
|
+code.
|
||
|
assert token.shape_ == 'Xxxxx'
|
||
|
for lexeme in nlp.vocab:
|
||
|
if lexeme.is_alpha:
|
||
|
lexeme.shape_ = 'W'
|
||
|
elif lexeme.is_digit:
|
||
|
lexeme.shape_ = 'D'
|
||
|
elif lexeme.is_punct:
|
||
|
lexeme.shape_ = 'P'
|
||
|
else:
|
||
|
lexeme.shape_ = 'M'
|
||
|
assert token.shape_ == 'W'
|
||
|
|
||
|
+h(2, "examples-numpy-arrays") Export to numpy arrays
|
||
|
|
||
|
+code.
|
||
|
from spacy.attrs import ORTH, LIKE_URL, IS_OOV
|
||
|
|
||
|
attr_ids = [ORTH, LIKE_URL, IS_OOV]
|
||
|
doc_array = doc.to_array(attr_ids)
|
||
|
assert doc_array.shape == (len(doc), len(attr_ids))
|
||
|
assert doc[0].orth == doc_array[0, 0]
|
||
|
assert doc[1].orth == doc_array[1, 0]
|
||
|
assert doc[0].like_url == doc_array[0, 1]
|
||
|
assert list(doc_array[:, 1]) == [t.like_url for t in doc]
|
||
|
|
||
|
+h(2, "examples-word-vectors") Word vectors
|
||
|
|
||
|
+code.
|
||
|
doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
|
||
|
|
||
|
apples = doc[0]
|
||
|
oranges = doc[2]
|
||
|
boots = doc[6]
|
||
|
hippos = doc[8]
|
||
|
|
||
|
assert apples.similarity(oranges) > boots.similarity(hippos)
|
||
|
|
||
|
+h(2, "examples-pos-tags") Part-of-speech tags
|
||
|
|
||
|
+code.
|
||
|
from spacy.parts_of_speech import ADV
|
||
|
|
||
|
def is_adverb(token):
|
||
|
return token.pos == spacy.parts_of_speech.ADV
|
||
|
|
||
|
# These are data-specific, so no constants are provided. You have to look
|
||
|
# up the IDs from the StringStore.
|
||
|
NNS = nlp.vocab.strings['NNS']
|
||
|
NNPS = nlp.vocab.strings['NNPS']
|
||
|
def is_plural_noun(token):
|
||
|
return token.tag == NNS or token.tag == NNPS
|
||
|
|
||
|
def print_coarse_pos(token):
|
||
|
print(token.pos_)
|
||
|
|
||
|
def print_fine_pos(token):
|
||
|
print(token.tag_)
|
||
|
|
||
|
+h(2, "examples-dependencies") Syntactic dependencies
|
||
|
|
||
|
+code.
|
||
|
def dependency_labels_to_root(token):
|
||
|
'''Walk up the syntactic tree, collecting the arc labels.'''
|
||
|
dep_labels = []
|
||
|
while token.head is not token:
|
||
|
dep_labels.append(token.dep)
|
||
|
token = token.head
|
||
|
return dep_labels
|
||
|
|
||
|
+h(2, "examples-entities") Named entities
|
||
|
|
||
|
+code.
|
||
|
def iter_products(docs):
|
||
|
for doc in docs:
|
||
|
for ent in doc.ents:
|
||
|
if ent.label_ == 'PRODUCT':
|
||
|
yield ent
|
||
|
|
||
|
def word_is_in_entity(word):
|
||
|
return word.ent_type != 0
|
||
|
|
||
|
def count_parent_verb_by_person(docs):
|
||
|
counts = defaultdict(defaultdict(int))
|
||
|
for doc in docs:
|
||
|
for ent in doc.ents:
|
||
|
if ent.label_ == 'PERSON' and ent.root.head.pos == VERB:
|
||
|
counts[ent.orth_][ent.root.head.lemma_] += 1
|
||
|
return counts
|
||
|
|
||
|
+h(2, "examples-inline") Calculate inline mark-up on original string
|
||
|
|
||
|
+code.
|
||
|
def put_spans_around_tokens(doc, get_classes):
|
||
|
'''Given some function to compute class names, put each token in a
|
||
|
span element, with the appropriate classes computed.
|
||
|
|
||
|
All whitespace is preserved, outside of the spans. (Yes, I know HTML
|
||
|
won't display it. But the point is no information is lost, so you can
|
||
|
calculate what you need, e.g. <br /> tags, <p> tags, etc.)
|
||
|
'''
|
||
|
output = []
|
||
|
template = '<span classes="{classes}">{word}</span>{space}'
|
||
|
for token in doc:
|
||
|
if token.is_space:
|
||
|
output.append(token.orth_)
|
||
|
else:
|
||
|
output.append(
|
||
|
template.format(
|
||
|
classes=' '.join(get_classes(token)),
|
||
|
word=token.orth_,
|
||
|
space=token.whitespace_))
|
||
|
string = ''.join(output)
|
||
|
string = string.replace('\n', '')
|
||
|
string = string.replace('\t', ' ')
|
||
|
return string
|
||
|
|
||
|
+h(2, "examples-binary") Efficient binary serialization
|
||
|
|
||
|
+code.
|
||
|
import spacy
|
||
|
from spacy.tokens.doc import Doc
|
||
|
|
||
|
byte_string = doc.to_bytes()
|
||
|
open('moby_dick.bin', 'wb').write(byte_string)
|
||
|
|
||
|
nlp = spacy.load('en')
|
||
|
for byte_string in Doc.read_bytes(open('moby_dick.bin', 'rb')):
|
||
|
doc = Doc(nlp.vocab)
|
||
|
doc.from_bytes(byte_string)
|