mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
201 lines
7.4 KiB
Python
201 lines
7.4 KiB
Python
|
import logging
|
||
|
import random
|
||
|
|
||
|
from collections import defaultdict
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Metrics(object):
|
||
|
true_pos = 0
|
||
|
false_pos = 0
|
||
|
false_neg = 0
|
||
|
|
||
|
def update_results(self, true_entity, candidate):
|
||
|
candidate_is_correct = true_entity == candidate
|
||
|
|
||
|
# Assume that we have no labeled negatives in the data (i.e. cases where true_entity is "NIL")
|
||
|
# Therefore, if candidate_is_correct then we have a true positive and never a true negative
|
||
|
self.true_pos += candidate_is_correct
|
||
|
self.false_neg += not candidate_is_correct
|
||
|
if candidate not in {"", "NIL"}:
|
||
|
self.false_pos += not candidate_is_correct
|
||
|
|
||
|
def calculate_precision(self):
|
||
|
if self.true_pos == 0:
|
||
|
return 0.0
|
||
|
else:
|
||
|
return self.true_pos / (self.true_pos + self.false_pos)
|
||
|
|
||
|
def calculate_recall(self):
|
||
|
if self.true_pos == 0:
|
||
|
return 0.0
|
||
|
else:
|
||
|
return self.true_pos / (self.true_pos + self.false_neg)
|
||
|
|
||
|
|
||
|
class EvaluationResults(object):
|
||
|
def __init__(self):
|
||
|
self.metrics = Metrics()
|
||
|
self.metrics_by_label = defaultdict(Metrics)
|
||
|
|
||
|
def update_metrics(self, ent_label, true_entity, candidate):
|
||
|
self.metrics.update_results(true_entity, candidate)
|
||
|
self.metrics_by_label[ent_label].update_results(true_entity, candidate)
|
||
|
|
||
|
def increment_false_negatives(self):
|
||
|
self.metrics.false_neg += 1
|
||
|
|
||
|
def report_metrics(self, model_name):
|
||
|
model_str = model_name.title()
|
||
|
recall = self.metrics.calculate_recall()
|
||
|
precision = self.metrics.calculate_precision()
|
||
|
return ("{}: ".format(model_str) +
|
||
|
"Recall = {} | ".format(round(recall, 3)) +
|
||
|
"Precision = {} | ".format(round(precision, 3)) +
|
||
|
"Precision by label = {}".format({k: v.calculate_precision()
|
||
|
for k, v in self.metrics_by_label.items()}))
|
||
|
|
||
|
|
||
|
class BaselineResults(object):
|
||
|
def __init__(self):
|
||
|
self.random = EvaluationResults()
|
||
|
self.prior = EvaluationResults()
|
||
|
self.oracle = EvaluationResults()
|
||
|
|
||
|
def report_accuracy(self, model):
|
||
|
results = getattr(self, model)
|
||
|
return results.report_metrics(model)
|
||
|
|
||
|
def update_baselines(self, true_entity, ent_label, random_candidate, prior_candidate, oracle_candidate):
|
||
|
self.oracle.update_metrics(ent_label, true_entity, oracle_candidate)
|
||
|
self.prior.update_metrics(ent_label, true_entity, prior_candidate)
|
||
|
self.random.update_metrics(ent_label, true_entity, random_candidate)
|
||
|
|
||
|
|
||
|
def measure_performance(dev_data, kb, el_pipe):
|
||
|
baseline_accuracies = measure_baselines(
|
||
|
dev_data, kb
|
||
|
)
|
||
|
|
||
|
logger.info(baseline_accuracies.report_accuracy("random"))
|
||
|
logger.info(baseline_accuracies.report_accuracy("prior"))
|
||
|
logger.info(baseline_accuracies.report_accuracy("oracle"))
|
||
|
|
||
|
# using only context
|
||
|
el_pipe.cfg["incl_context"] = True
|
||
|
el_pipe.cfg["incl_prior"] = False
|
||
|
results = get_eval_results(dev_data, el_pipe)
|
||
|
logger.info(results.report_metrics("context only"))
|
||
|
|
||
|
# measuring combined accuracy (prior + context)
|
||
|
el_pipe.cfg["incl_context"] = True
|
||
|
el_pipe.cfg["incl_prior"] = True
|
||
|
results = get_eval_results(dev_data, el_pipe)
|
||
|
logger.info(results.report_metrics("context and prior"))
|
||
|
|
||
|
|
||
|
def get_eval_results(data, el_pipe=None):
|
||
|
# If the docs in the data require further processing with an entity linker, set el_pipe
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
docs = []
|
||
|
golds = []
|
||
|
for d, g in tqdm(data, leave=False):
|
||
|
if len(d) > 0:
|
||
|
golds.append(g)
|
||
|
if el_pipe is not None:
|
||
|
docs.append(el_pipe(d))
|
||
|
else:
|
||
|
docs.append(d)
|
||
|
|
||
|
results = EvaluationResults()
|
||
|
for doc, gold in zip(docs, golds):
|
||
|
tagged_entries_per_article = {_offset(ent.start_char, ent.end_char): ent for ent in doc.ents}
|
||
|
try:
|
||
|
correct_entries_per_article = dict()
|
||
|
for entity, kb_dict in gold.links.items():
|
||
|
start, end = entity
|
||
|
# only evaluating on positive examples
|
||
|
for gold_kb, value in kb_dict.items():
|
||
|
if value:
|
||
|
offset = _offset(start, end)
|
||
|
correct_entries_per_article[offset] = gold_kb
|
||
|
if offset not in tagged_entries_per_article:
|
||
|
results.increment_false_negatives()
|
||
|
|
||
|
for ent in doc.ents:
|
||
|
ent_label = ent.label_
|
||
|
pred_entity = ent.kb_id_
|
||
|
start = ent.start_char
|
||
|
end = ent.end_char
|
||
|
offset = _offset(start, end)
|
||
|
gold_entity = correct_entries_per_article.get(offset, None)
|
||
|
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||
|
if gold_entity is not None:
|
||
|
results.update_metrics(ent_label, gold_entity, pred_entity)
|
||
|
|
||
|
except Exception as e:
|
||
|
logging.error("Error assessing accuracy " + str(e))
|
||
|
|
||
|
return results
|
||
|
|
||
|
|
||
|
def measure_baselines(data, kb):
|
||
|
# Measure 3 performance baselines: random selection, prior probabilities, and 'oracle' prediction for upper bound
|
||
|
counts_d = dict()
|
||
|
|
||
|
baseline_results = BaselineResults()
|
||
|
|
||
|
docs = [d for d, g in data if len(d) > 0]
|
||
|
golds = [g for d, g in data if len(d) > 0]
|
||
|
|
||
|
for doc, gold in zip(docs, golds):
|
||
|
correct_entries_per_article = dict()
|
||
|
tagged_entries_per_article = {_offset(ent.start_char, ent.end_char): ent for ent in doc.ents}
|
||
|
for entity, kb_dict in gold.links.items():
|
||
|
start, end = entity
|
||
|
for gold_kb, value in kb_dict.items():
|
||
|
# only evaluating on positive examples
|
||
|
if value:
|
||
|
offset = _offset(start, end)
|
||
|
correct_entries_per_article[offset] = gold_kb
|
||
|
if offset not in tagged_entries_per_article:
|
||
|
baseline_results.random.increment_false_negatives()
|
||
|
baseline_results.oracle.increment_false_negatives()
|
||
|
baseline_results.prior.increment_false_negatives()
|
||
|
|
||
|
for ent in doc.ents:
|
||
|
ent_label = ent.label_
|
||
|
start = ent.start_char
|
||
|
end = ent.end_char
|
||
|
offset = _offset(start, end)
|
||
|
gold_entity = correct_entries_per_article.get(offset, None)
|
||
|
|
||
|
# the gold annotations are not complete so we can't evaluate missing annotations as 'wrong'
|
||
|
if gold_entity is not None:
|
||
|
candidates = kb.get_candidates(ent.text)
|
||
|
oracle_candidate = ""
|
||
|
best_candidate = ""
|
||
|
random_candidate = ""
|
||
|
if candidates:
|
||
|
scores = []
|
||
|
|
||
|
for c in candidates:
|
||
|
scores.append(c.prior_prob)
|
||
|
if c.entity_ == gold_entity:
|
||
|
oracle_candidate = c.entity_
|
||
|
|
||
|
best_index = scores.index(max(scores))
|
||
|
best_candidate = candidates[best_index].entity_
|
||
|
random_candidate = random.choice(candidates).entity_
|
||
|
|
||
|
baseline_results.update_baselines(gold_entity, ent_label,
|
||
|
random_candidate, best_candidate, oracle_candidate)
|
||
|
|
||
|
return baseline_results
|
||
|
|
||
|
|
||
|
def _offset(start, end):
|
||
|
return "{}_{}".format(start, end)
|