spaCy/tests/serialize/test_packer.py

98 lines
2.7 KiB
Python
Raw Normal View History

2015-07-17 22:21:10 +03:00
from __future__ import unicode_literals
import pytest
import numpy
from spacy.vocab import Vocab
from spacy.tokens.doc import Doc
2015-07-18 23:46:40 +03:00
from spacy.attrs import ORTH, SPACY, TAG, DEP, HEAD
2015-07-17 22:21:10 +03:00
from spacy.serialize.packer import Packer
from spacy.serialize.bits import BitArray
def get_lex_props(string, prob=-22):
return {
'flags': 0,
'length': len(string),
'orth': string,
'lower': string,
'norm': string,
'shape': string,
'prefix': string[0],
'suffix': string[-3:],
'cluster': 0,
'prob': prob,
'sentiment': 0
}
@pytest.fixture
def vocab():
vocab = Vocab(get_lex_props=get_lex_props)
vocab['dog'] = get_lex_props('dog', 0.001)
2015-07-18 23:46:40 +03:00
assert vocab[vocab.strings['dog']].orth_ == 'dog'
2015-07-17 22:21:10 +03:00
vocab['the'] = get_lex_props('the', 0.01)
vocab['quick'] = get_lex_props('quick', 0.005)
vocab['jumped'] = get_lex_props('jumped', 0.007)
return vocab
def test_packer_unannotated(vocab):
2015-07-18 23:46:40 +03:00
packer = Packer(vocab, [(ORTH, [(lex.orth, lex.prob) for lex in vocab]),
(SPACY, [])])
2015-07-17 22:21:10 +03:00
2015-07-18 23:46:40 +03:00
ids = [vocab[w].orth for w in 'the dog jumped'.split()]
2015-07-17 22:21:10 +03:00
msg = Doc.from_ids(vocab, ids, [1, 1, 0])
assert msg.string == 'the dog jumped'
bits = packer.pack(msg)
result = packer.unpack(bits)
assert result.string == 'the dog jumped'
def test_packer_annotated(vocab):
nn = vocab.strings['NN']
dt = vocab.strings['DT']
vbd = vocab.strings['VBD']
jj = vocab.strings['JJ']
det = vocab.strings['det']
nsubj = vocab.strings['nsubj']
adj = vocab.strings['adj']
root = vocab.strings['ROOT']
attr_freqs = [
2015-07-18 23:46:40 +03:00
(ORTH, [(lex.orth, lex.prob) for lex in vocab]),
2015-07-17 22:21:10 +03:00
(SPACY, []),
(TAG, [(nn, 0.1), (dt, 0.2), (jj, 0.01), (vbd, 0.05)]),
(DEP, {det: 0.2, nsubj: 0.1, adj: 0.05, root: 0.1}.items()),
(HEAD, {0: 0.05, 1: 0.2, -1: 0.2, -2: 0.1, 2: 0.1}.items())
]
packer = Packer(vocab, attr_freqs)
2015-07-18 23:46:40 +03:00
ids = [vocab[w].orth for w in 'the dog jumped'.split()]
2015-07-17 22:21:10 +03:00
msg = Doc.from_ids(vocab, ids, [1, 1, 0])
msg.from_array(
[TAG, DEP, HEAD],
numpy.array([
[dt, det, 1],
[nn, nsubj, 1],
[vbd, root, 0]
], dtype=numpy.int32))
assert msg.string == 'the dog jumped'
assert [t.tag_ for t in msg] == ['DT', 'NN', 'VBD']
assert [t.dep_ for t in msg] == ['det', 'nsubj', 'ROOT']
assert [(t.head.i - t.i) for t in msg] == [1, 1, 0]
bits = packer.pack(msg)
result = packer.unpack(bits)
assert result.string == 'the dog jumped'
assert [t.tag_ for t in result] == ['DT', 'NN', 'VBD']
assert [t.dep_ for t in result] == ['det', 'nsubj', 'ROOT']
assert [(t.head.i - t.i) for t in result] == [1, 1, 0]