mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
115 lines
3.7 KiB
Python
115 lines
3.7 KiB
Python
|
# coding: utf-8
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
import pytest
|
||
|
from spacy.pipeline import Tagger, DependencyParser, EntityRecognizer, Tensorizer, TextCategorizer
|
||
|
|
||
|
from ..util import make_tempdir
|
||
|
|
||
|
|
||
|
test_parsers = [DependencyParser, EntityRecognizer]
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def parser(en_vocab):
|
||
|
parser = DependencyParser(en_vocab)
|
||
|
parser.add_label('nsubj')
|
||
|
parser.model, cfg = parser.Model(parser.moves.n_moves)
|
||
|
parser.cfg.update(cfg)
|
||
|
return parser
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def blank_parser(en_vocab):
|
||
|
parser = DependencyParser(en_vocab)
|
||
|
return parser
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def taggers(en_vocab):
|
||
|
tagger1 = Tagger(en_vocab)
|
||
|
tagger2 = Tagger(en_vocab)
|
||
|
tagger1.model = tagger1.Model(8)
|
||
|
tagger2.model = tagger1.model
|
||
|
return (tagger1, tagger2)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('Parser', test_parsers)
|
||
|
def test_serialize_parser_roundtrip_bytes(en_vocab, Parser):
|
||
|
parser = Parser(en_vocab)
|
||
|
parser.model, _ = parser.Model(10)
|
||
|
new_parser = Parser(en_vocab)
|
||
|
new_parser.model, _ = new_parser.Model(10)
|
||
|
new_parser = new_parser.from_bytes(parser.to_bytes())
|
||
|
assert new_parser.to_bytes() == parser.to_bytes()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize('Parser', test_parsers)
|
||
|
def test_serialize_parser_roundtrip_disk(en_vocab, Parser):
|
||
|
parser = Parser(en_vocab)
|
||
|
parser.model, _ = parser.Model(0)
|
||
|
with make_tempdir() as d:
|
||
|
file_path = d / 'parser'
|
||
|
parser.to_disk(file_path)
|
||
|
parser_d = Parser(en_vocab)
|
||
|
parser_d.model, _ = parser_d.Model(0)
|
||
|
parser_d = parser_d.from_disk(file_path)
|
||
|
assert parser.to_bytes(model=False) == parser_d.to_bytes(model=False)
|
||
|
|
||
|
|
||
|
def test_to_from_bytes(parser, blank_parser):
|
||
|
assert parser.model is not True
|
||
|
assert blank_parser.model is True
|
||
|
assert blank_parser.moves.n_moves != parser.moves.n_moves
|
||
|
bytes_data = parser.to_bytes()
|
||
|
blank_parser.from_bytes(bytes_data)
|
||
|
assert blank_parser.model is not True
|
||
|
assert blank_parser.moves.n_moves == parser.moves.n_moves
|
||
|
|
||
|
|
||
|
@pytest.mark.skip(reason="This seems to be a dict ordering bug somewhere. Only failing on some platforms.")
|
||
|
def test_serialize_tagger_roundtrip_bytes(en_vocab, taggers):
|
||
|
tagger1, tagger2 = taggers
|
||
|
tagger1_b = tagger1.to_bytes()
|
||
|
tagger2_b = tagger2.to_bytes()
|
||
|
tagger1 = tagger1.from_bytes(tagger1_b)
|
||
|
assert tagger1.to_bytes() == tagger1_b
|
||
|
new_tagger1 = Tagger(en_vocab).from_bytes(tagger1_b)
|
||
|
assert new_tagger1.to_bytes() == tagger1_b
|
||
|
|
||
|
|
||
|
def test_serialize_tagger_roundtrip_disk(en_vocab, taggers):
|
||
|
tagger1, tagger2 = taggers
|
||
|
with make_tempdir() as d:
|
||
|
file_path1 = d / 'tagger1'
|
||
|
file_path2 = d / 'tagger2'
|
||
|
tagger1.to_disk(file_path1)
|
||
|
tagger2.to_disk(file_path2)
|
||
|
tagger1_d = Tagger(en_vocab).from_disk(file_path1)
|
||
|
tagger2_d = Tagger(en_vocab).from_disk(file_path2)
|
||
|
assert tagger1_d.to_bytes() == tagger2_d.to_bytes()
|
||
|
|
||
|
|
||
|
def test_serialize_tensorizer_roundtrip_bytes(en_vocab):
|
||
|
tensorizer = Tensorizer(en_vocab)
|
||
|
tensorizer.model = tensorizer.Model()
|
||
|
tensorizer_b = tensorizer.to_bytes()
|
||
|
new_tensorizer = Tensorizer(en_vocab).from_bytes(tensorizer_b)
|
||
|
assert new_tensorizer.to_bytes() == tensorizer_b
|
||
|
|
||
|
|
||
|
def test_serialize_tensorizer_roundtrip_disk(en_vocab):
|
||
|
tensorizer = Tensorizer(en_vocab)
|
||
|
tensorizer.model = tensorizer.Model()
|
||
|
with make_tempdir() as d:
|
||
|
file_path = d / 'tensorizer'
|
||
|
tensorizer.to_disk(file_path)
|
||
|
tensorizer_d = Tensorizer(en_vocab).from_disk(file_path)
|
||
|
assert tensorizer.to_bytes() == tensorizer_d.to_bytes()
|
||
|
|
||
|
|
||
|
def test_serialize_textcat_empty(en_vocab):
|
||
|
# See issue #1105
|
||
|
textcat = TextCategorizer(en_vocab, labels=['ENTITY', 'ACTION', 'MODIFIER'])
|
||
|
textcat_bytes = textcat.to_bytes()
|