mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-16 20:46:24 +03:00
189 lines
6.2 KiB
Python
189 lines
6.2 KiB
Python
|
from __future__ import division
|
||
|
from numpy import average, zeros, outer, random, exp, sqrt, concatenate, argmax
|
||
|
import numpy
|
||
|
|
||
|
from .util import Scorer
|
||
|
|
||
|
|
||
|
class Adagrad(object):
|
||
|
def __init__(self, dim, lr):
|
||
|
self.dim = dim
|
||
|
self.eps = 1e-3
|
||
|
# initial learning rate
|
||
|
self.learning_rate = lr
|
||
|
# stores sum of squared gradients
|
||
|
self.h = zeros(self.dim)
|
||
|
self._curr_rate = zeros(self.h.shape)
|
||
|
|
||
|
def rescale(self, gradient):
|
||
|
self._curr_rate.fill(0)
|
||
|
self.h += gradient ** 2
|
||
|
self._curr_rate = self.learning_rate / (sqrt(self.h) + self.eps)
|
||
|
return self._curr_rate * gradient
|
||
|
|
||
|
def reset_weights(self):
|
||
|
self.h = zeros(self.dim)
|
||
|
|
||
|
|
||
|
class Params(object):
|
||
|
@classmethod
|
||
|
def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
|
||
|
return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: zeros((x,)))
|
||
|
|
||
|
@classmethod
|
||
|
def random(cls, depth, nE, nH, nL, nV):
|
||
|
return cls(depth, nE, nH, nL, nV, lambda x: (random.rand(x) * 2 - 1) * 0.08)
|
||
|
|
||
|
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
|
||
|
nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
|
||
|
n_weights = sum([
|
||
|
(nE * nH) + nH,
|
||
|
(nH * nH + nH) * depth,
|
||
|
(nH * nL) + nL,
|
||
|
(nV * nE)
|
||
|
])
|
||
|
self.data = initializer(n_weights)
|
||
|
self.W = []
|
||
|
self.b = []
|
||
|
i = self._add_layer(0, nE, nH)
|
||
|
for _ in range(1, depth):
|
||
|
i = self._add_layer(i, nH, nH)
|
||
|
i = self._add_layer(i, nL, nH)
|
||
|
self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
|
||
|
self.E.fill(0)
|
||
|
|
||
|
def _add_layer(self, start, x, y):
|
||
|
end = start + (x * y)
|
||
|
self.W.append(self.data[start : end].reshape((x, y)))
|
||
|
self.b.append(self.data[end : end + x].reshape((x, )))
|
||
|
return end + x
|
||
|
|
||
|
|
||
|
def softmax(actvn, W, b):
|
||
|
w = W.dot(actvn) + b
|
||
|
ew = exp(w - max(w))
|
||
|
return (ew / sum(ew)).ravel()
|
||
|
|
||
|
|
||
|
def relu(actvn, W, b):
|
||
|
x = W.dot(actvn) + b
|
||
|
return x * (x > 0)
|
||
|
|
||
|
|
||
|
def d_relu(x):
|
||
|
return x > 0
|
||
|
|
||
|
|
||
|
class Network(object):
|
||
|
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, rho=1e-4, lr=0.005):
|
||
|
self.depth = depth
|
||
|
self.n_embed = n_embed
|
||
|
self.n_hidden = n_hidden
|
||
|
self.n_labels = n_labels
|
||
|
self.n_vocab = n_vocab
|
||
|
|
||
|
self.params = Params.random(depth, n_embed, n_hidden, n_labels, n_vocab)
|
||
|
self.gradient = Params.zero(depth, n_embed, n_hidden, n_labels, n_vocab)
|
||
|
self.adagrad = Adagrad(self.params.data.shape, lr)
|
||
|
self.seen_words = {}
|
||
|
|
||
|
self.pred = zeros(self.n_labels)
|
||
|
self.actvn = zeros((self.depth, self.n_hidden))
|
||
|
self.input_vector = zeros((self.n_embed, ))
|
||
|
|
||
|
def forward(self, word_ids, embeddings):
|
||
|
self.input_vector.fill(0)
|
||
|
self.input_vector += sum(embeddings)
|
||
|
# Apply the fine-tuning we've learned
|
||
|
for id_ in word_ids:
|
||
|
if id_ < self.n_vocab:
|
||
|
self.input_vector += self.params.E[id_]
|
||
|
# Average
|
||
|
self.input_vector /= len(embeddings)
|
||
|
prev = self.input_vector
|
||
|
for i in range(self.depth):
|
||
|
self.actvn[i] = relu(prev, self.params.W[i], self.params.b[i])
|
||
|
return x * (x > 0)
|
||
|
|
||
|
|
||
|
prev = self.actvn[i]
|
||
|
self.pred = softmax(self.actvn[-1], self.params.W[-1], self.params.b[-1])
|
||
|
return argmax(self.pred)
|
||
|
|
||
|
def backward(self, word_ids, label):
|
||
|
target = zeros(self.n_labels)
|
||
|
target[label] = 1.0
|
||
|
D = self.pred - target
|
||
|
|
||
|
for i in range(self.depth, 0, -1):
|
||
|
self.gradient.b[i] += D
|
||
|
self.gradient.W[i] += outer(D, self.actvn[i-1])
|
||
|
D = d_relu(self.actvn[i-1]) * self.params.W[i].T.dot(D)
|
||
|
|
||
|
self.gradient.b[0] += D
|
||
|
self.gradient.W[0] += outer(D, self.input_vector)
|
||
|
|
||
|
grad = self.params.W[0].T.dot(D).reshape((self.n_embed,)) / len(word_ids)
|
||
|
for word_id in word_ids:
|
||
|
if word_id < self.n_vocab:
|
||
|
self.gradient.E[word_id] += grad
|
||
|
self.seen_words[word_id] = self.seen_words.get(word_id, 0) + 1
|
||
|
|
||
|
def update(self, rho, n):
|
||
|
# L2 Regularization
|
||
|
for i in range(self.depth):
|
||
|
self.gradient.W[i] += self.params.W[i] * rho
|
||
|
self.gradient.b[i] += self.params.b[i] * rho
|
||
|
# Do word embedding tuning
|
||
|
for word_id, freq in self.seen_words.items():
|
||
|
self.gradient.E[word_id] += (self.params.E[word_id] * freq) * rho
|
||
|
|
||
|
update = self.gradient.data / n
|
||
|
update = self.adagrad.rescale(update)
|
||
|
self.params.data -= update
|
||
|
self.gradient.data.fill(0)
|
||
|
self.seen_words = {}
|
||
|
|
||
|
|
||
|
def get_words(doc, dropout_rate, n_vocab):
|
||
|
mask = random.rand(len(doc)) > dropout_rate
|
||
|
word_ids = []
|
||
|
embeddings = []
|
||
|
for word in doc:
|
||
|
if mask[word.i] and not word.is_punct:
|
||
|
embeddings.append(word.vector)
|
||
|
word_ids.append(word.orth)
|
||
|
# all examples must have at least one word
|
||
|
if not embeddings:
|
||
|
return [w.orth for w in doc], [w.vector for w in doc]
|
||
|
else:
|
||
|
return word_ids, embeddings
|
||
|
|
||
|
|
||
|
def train(dataset, n_embed, n_hidden, n_labels, n_vocab, depth, dropout_rate, rho,
|
||
|
n_iter, save_model):
|
||
|
model = Network(depth, n_embed, n_hidden, n_labels, n_vocab)
|
||
|
best_acc = 0
|
||
|
for epoch in range(n_iter):
|
||
|
train_score = Scorer()
|
||
|
# create mini-batches
|
||
|
for batch in dataset.batches(dataset.train):
|
||
|
for doc, label in batch:
|
||
|
if len(doc) == 0:
|
||
|
continue
|
||
|
word_ids, embeddings = get_words(doc, dropout_rate, n_vocab)
|
||
|
guess = model.forward(word_ids, embeddings)
|
||
|
model.backward(word_ids, label)
|
||
|
train_score += guess == label
|
||
|
model.update(rho, len(batch))
|
||
|
test_score = Scorer()
|
||
|
for doc, label in dataset.dev:
|
||
|
word_ids, embeddings = get_words(doc, 0.0, n_vocab)
|
||
|
guess = model.forward(word_ids, embeddings)
|
||
|
test_score += guess == label
|
||
|
if test_score.true >= best_acc:
|
||
|
best_acc = test_score.true
|
||
|
save_model(epoch, model.params.data)
|
||
|
print "%d\t%s\t%s" % (epoch, train_score, test_score)
|
||
|
return model
|