mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 12:18:04 +03:00
417 lines
10 KiB
Plaintext
417 lines
10 KiB
Plaintext
|
//- 💫 DOCS > API > DOC
|
||
|
|
||
|
include ../../_includes/_mixins
|
||
|
|
||
|
p A container for accessing linguistic annotations.
|
||
|
|
||
|
+h(2, "attributes") Attributes
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code mem]
|
||
|
+cell #[code Pool]
|
||
|
+cell The document's local memory heap, for all C data it owns.
|
||
|
|
||
|
+row
|
||
|
+cell #[code vocab]
|
||
|
+cell #[code Vocab]
|
||
|
+cell The store of lexical types.
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_data]
|
||
|
+cell -
|
||
|
+cell A generic storage area, for user custom data.
|
||
|
|
||
|
+row
|
||
|
+cell #[code is_tagged]
|
||
|
+cell bool
|
||
|
+cell
|
||
|
| A flag indicating that the document has been part-of-speech
|
||
|
| tagged.
|
||
|
|
||
|
+row
|
||
|
+cell #[code is_parsed]
|
||
|
+cell bool
|
||
|
+cell A flag indicating that the document has been syntactically parsed.
|
||
|
|
||
|
+row
|
||
|
+cell #[code sentiment]
|
||
|
+cell float
|
||
|
+cell The document's positivity/negativity score, if available.
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_hooks]
|
||
|
+cell dict
|
||
|
+cell
|
||
|
| A dictionary that allows customisation of the #[code Doc]'s
|
||
|
| properties.
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_token_hooks]
|
||
|
+cell dict
|
||
|
+cell
|
||
|
| A dictionary that allows customisation of properties of
|
||
|
| #[code Token] chldren.
|
||
|
|
||
|
+row
|
||
|
+cell #[code user_span_hooks]
|
||
|
+cell dict
|
||
|
+cell
|
||
|
| A dictionary that allows customisation of properties of
|
||
|
| #[code Span] chldren.
|
||
|
|
||
|
+h(2, "init") Doc.__init__
|
||
|
+tag method
|
||
|
|
||
|
p Construct a #[code Doc] object.
|
||
|
|
||
|
+aside("Note")
|
||
|
| The most common way to get a #[code Doc] object is via the #[code nlp]
|
||
|
| object. This method is usually only used for deserialization or preset
|
||
|
| tokenization.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code vocab]
|
||
|
+cell #[code Vocab]
|
||
|
+cell A storage container for lexical types.
|
||
|
|
||
|
+row
|
||
|
+cell #[code words]
|
||
|
+cell -
|
||
|
+cell A list of strings to add to the container.
|
||
|
|
||
|
+row
|
||
|
+cell #[code spaces]
|
||
|
+cell -
|
||
|
+cell
|
||
|
| A list of boolean values indicating whether each word has a
|
||
|
| subsequent space. Must have the same length as #[code words], if
|
||
|
| specified. Defaults to a sequence of #[code True].
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code Doc]
|
||
|
+cell The newly constructed object.
|
||
|
|
||
|
+h(2, "getitem") Doc.__getitem__
|
||
|
+tag method
|
||
|
|
||
|
p Get a #[code Token] object.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
doc = nlp(u'Give it back! He pleaded.')
|
||
|
assert doc[0].text == 'Give'
|
||
|
assert doc[-1].text == '.'
|
||
|
span = doc[1:1]
|
||
|
assert span.text == 'it back'
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code i]
|
||
|
+cell int
|
||
|
+cell The index of the token.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code Token]
|
||
|
+cell The token at #[code doc[i]].
|
||
|
|
||
|
p Get a #[code Span] object.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code start_end]
|
||
|
+cell tuple
|
||
|
+cell The slice of the document to get.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code Span]
|
||
|
+cell The span at #[code doc[start : end]].
|
||
|
|
||
|
+h(2, "iter") Doc.__iter__
|
||
|
+tag method
|
||
|
|
||
|
p Iterate over #[code Token] objects.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell yield
|
||
|
+cell #[code Token]
|
||
|
+cell A #[code Token] object.
|
||
|
|
||
|
+h(2, "len") Doc.__len__
|
||
|
+tag method
|
||
|
|
||
|
p Get the number of tokens in the document.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell int
|
||
|
+cell The number of tokens in the document.
|
||
|
|
||
|
+h(2, "similarity") Doc.similarity
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Make a semantic similarity estimate. The default estimate is cosine
|
||
|
| similarity using an average of word vectors.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code other]
|
||
|
+cell -
|
||
|
+cell
|
||
|
| The object to compare with. By default, accepts #[code Doc],
|
||
|
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell float
|
||
|
+cell A scalar similarity score. Higher is more similar.
|
||
|
|
||
|
+h(2, "to_array") Doc.to_array
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Export the document annotations to a numpy array of shape #[code N*M]
|
||
|
| where #[code N] is the length of the document and #[code M] is the number
|
||
|
| of attribute IDs to export. The values will be 32-bit integers.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
from spacy import attrs
|
||
|
doc = nlp(text)
|
||
|
# All strings mapped to integers, for easy export to numpy
|
||
|
np_array = doc.to_array([attrs.LOWER, attrs.POS,
|
||
|
attrs.ENT_TYPE, attrs.IS_ALPHA])
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code attr_ids]
|
||
|
+cell ints
|
||
|
+cell A list of attribute ID ints.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code numpy.ndarray[ndim=2, dtype='int32']]
|
||
|
+cell
|
||
|
| The exported attributes as a 2D numpy array, with one row per
|
||
|
| token and one column per attribute.
|
||
|
|
||
|
+h(2, "count_by") Doc.count_by
|
||
|
+tag method
|
||
|
|
||
|
p Count the frequencies of a given attribute.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code attr_id]
|
||
|
+cell int
|
||
|
+cell The attribute ID
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell dict
|
||
|
+cell A dictionary mapping attributes to integer counts.
|
||
|
|
||
|
+h(2, "from_array") Doc.from_array
|
||
|
+tag method
|
||
|
|
||
|
p Load attributes from a numpy array.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code attr_ids]
|
||
|
+cell ints
|
||
|
+cell A list of attribute ID ints.
|
||
|
|
||
|
+row
|
||
|
+cell #[code values]
|
||
|
+cell #[code numpy.ndarray[ndim=2, dtype='int32']]
|
||
|
+cell The attribute values to load.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code None]
|
||
|
+cell -
|
||
|
|
||
|
+h(2, "to_bytes") Doc.to_bytes
|
||
|
+tag method
|
||
|
|
||
|
p Export the document contents to a binary string.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell bytes
|
||
|
+cell
|
||
|
| A losslessly serialized copy of the #[code Doc] including all
|
||
|
| annotations.
|
||
|
|
||
|
+h(2, "from_bytes") Doc.from_bytes
|
||
|
+tag method
|
||
|
|
||
|
p Import the document contents from a binary string.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code byte_string]
|
||
|
+cell bytes
|
||
|
+cell The string to load from.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code Doc]
|
||
|
+cell The #[code self] variable.
|
||
|
|
||
|
+h(2, "merge") Doc.merge
|
||
|
+tag method
|
||
|
|
||
|
p
|
||
|
| Retokenize the document, such that the span at
|
||
|
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
|
||
|
| #[code start_idx] and #[end_idx] do not mark start and end token
|
||
|
| boundaries, the document remains unchanged.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell #[code start_idx]
|
||
|
+cell int
|
||
|
+cell The character index of the start of the slice to merge.
|
||
|
|
||
|
+row
|
||
|
+cell #[code end_idx]
|
||
|
+cell int
|
||
|
+cell The character index after the end of the slice to merge.
|
||
|
|
||
|
+row
|
||
|
+cell #[code **attributes]
|
||
|
+cell -
|
||
|
+cell
|
||
|
| Attributes to assign to the merged token. By default,
|
||
|
| attributes are inherited from the syntactic root token of
|
||
|
| the span.
|
||
|
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code Token]
|
||
|
+cell
|
||
|
| The newly merged token, or None if the start and end
|
||
|
| indices did not fall at token boundaries
|
||
|
|
||
|
+h(2, "read_bytes") Doc.read_bytes
|
||
|
+tag staticmethod
|
||
|
|
||
|
p A static method, used to read serialized #[code Doc] objects from a file.
|
||
|
|
||
|
+aside-code("Example").
|
||
|
from spacy.tokens.doc import Doc
|
||
|
loc = 'test_serialize.bin'
|
||
|
with open(loc, 'wb') as file_:
|
||
|
file_.write(nlp(u'This is a document.').to_bytes())
|
||
|
file_.write(nlp(u'This is another.').to_bytes())
|
||
|
docs = []
|
||
|
with open(loc, 'rb') as file_:
|
||
|
for byte_string in Doc.read_bytes(file_):
|
||
|
docs.append(Doc(nlp.vocab).from_bytes(byte_string))
|
||
|
assert len(docs) == 2
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+row
|
||
|
+cell file
|
||
|
+cell buffer
|
||
|
+cell A binary buffer to read the serialized annotations from.
|
||
|
|
||
|
+footrow
|
||
|
+cell yield
|
||
|
+cell bytes
|
||
|
+cell Binary strings from with documents can be loaded.
|
||
|
|
||
|
+h(2, "text") Doc.text
|
||
|
+tag property
|
||
|
|
||
|
p A unicode representation of the document text.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell unicode
|
||
|
+cell The original verbatim text of the document.
|
||
|
|
||
|
+h(2, "text_with_ws") Doc.text_with_ws
|
||
|
+tag property
|
||
|
|
||
|
p
|
||
|
| An alias of #[code Doc.text], provided for duck-type compatibility with
|
||
|
| #[code Span] and #[code Token].
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell unicode
|
||
|
+cell The original verbatim text of the document.
|
||
|
|
||
|
+h(2, "sents") Doc.sents
|
||
|
+tag property
|
||
|
|
||
|
p Iterate over the sentences in the document.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell yield
|
||
|
+cell #[code Span]
|
||
|
+cell Sentences in the document.
|
||
|
|
||
|
+h(2, "ents") Doc.ents
|
||
|
+tag property
|
||
|
|
||
|
p Iterate over the entities in the document.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell yield
|
||
|
+cell #[code Span]
|
||
|
+cell Entities in the document.
|
||
|
|
||
|
+h(2, "noun_chunks") Doc.noun_chunks
|
||
|
+tag property
|
||
|
|
||
|
p
|
||
|
| Iterate over the base noun phrases in the document. A base noun phrase,
|
||
|
| or "NP chunk", is a noun phrase that does not permit other NPs to be
|
||
|
| nested within it.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell yield
|
||
|
+cell #[code Span]
|
||
|
+cell Noun chunks in the document
|
||
|
|
||
|
+h(2, "vector") Doc.vector
|
||
|
+tag property
|
||
|
|
||
|
p
|
||
|
| A real-valued meaning representation. Defaults to an average of the
|
||
|
| token vectors.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell #[code numpy.ndarray[ndim=1, dtype='float32']]
|
||
|
+cell A 1D numpy array representing the document's semantics.
|
||
|
|
||
|
+h(2, "has_vector") Doc.has_vector
|
||
|
+tag property
|
||
|
|
||
|
p
|
||
|
| A boolean value indicating whether a word vector is associated with the
|
||
|
| object.
|
||
|
|
||
|
+table(["Name", "Type", "Description"])
|
||
|
+footrow
|
||
|
+cell return
|
||
|
+cell bool
|
||
|
+cell Whether the document has a vector data attached.
|