spaCy/bin/parser/train_ud.py

114 lines
4.0 KiB
Python
Raw Normal View History

2016-11-26 02:45:45 +03:00
from __future__ import unicode_literals
import plac
import json
from os import path
import shutil
import os
import random
2016-05-23 15:01:46 +03:00
import io
2016-11-26 02:45:45 +03:00
import pathlib
from spacy.tokens import Doc
from spacy.syntax.nonproj import PseudoProjectivity
from spacy.language import Language
from spacy.gold import GoldParse
from spacy.vocab import Vocab
from spacy.tagger import Tagger
from spacy.pipeline import DependencyParser
from spacy.syntax.parser import get_templates
from spacy.syntax.arc_eager import ArcEager
from spacy.scorer import Scorer
import spacy.attrs
2016-11-26 02:45:45 +03:00
import io
def read_conllx(loc):
2016-11-26 02:45:45 +03:00
with io.open(loc, 'r', encoding='utf8') as file_:
text = file_.read()
for sent in text.strip().split('\n\n'):
lines = sent.strip().split('\n')
if lines:
while lines[0].startswith('#'):
lines.pop(0)
tokens = []
for line in lines:
id_, word, lemma, tag, pos, morph, head, dep, _1, _2 = line.split()
if '-' in id_:
continue
try:
id_ = int(id_) - 1
head = (int(head) - 1) if head != '0' else id_
dep = 'ROOT' if dep == 'root' else dep
tokens.append((id_, word, tag, head, dep, 'O'))
except:
print(line)
raise
tuples = [list(t) for t in zip(*tokens)]
yield (None, [[tuples, []]])
def score_model(vocab, tagger, parser, gold_docs, verbose=False):
scorer = Scorer()
for _, gold_doc in gold_docs:
for (ids, words, tags, heads, deps, entities), _ in gold_doc:
doc = Doc(vocab, words=words)
tagger(doc)
parser(doc)
2016-11-26 02:45:45 +03:00
PseudoProjectivity.deprojectivize(doc)
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
scorer.score(doc, gold, verbose=verbose)
return scorer
def main(train_loc, dev_loc, model_dir, tag_map_loc):
with open(tag_map_loc) as file_:
tag_map = json.loads(file_.read())
train_sents = list(read_conllx(train_loc))
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
2016-11-26 02:45:45 +03:00
actions = ArcEager.get_actions(gold_parses=train_sents)
features = get_templates('basic')
2016-11-26 02:45:45 +03:00
model_dir = pathlib.Path(model_dir)
if not (model_dir / 'deps').exists():
(model_dir / 'deps').mkdir()
2016-11-26 03:04:30 +03:00
with (model_dir / 'deps' / 'config.json').open('w') as file_:
2016-11-26 02:45:45 +03:00
json.dump({'pseudoprojective': True, 'labels': actions, 'features': features}, file_)
vocab = Vocab(lex_attr_getters=Language.Defaults.lex_attr_getters, tag_map=tag_map)
# Populate vocab
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
for word in words:
_ = vocab[word]
2016-11-26 02:45:45 +03:00
for dep in deps:
_ = vocab[dep]
for tag in tags:
_ = vocab[tag]
for tag in tags:
assert tag in tag_map, repr(tag)
tagger = Tagger(vocab, tag_map=tag_map)
parser = DependencyParser(vocab, actions=actions, features=features)
for itn in range(15):
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
doc = Doc(vocab, words=words)
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
tagger(doc)
parser.update(doc, gold)
doc = Doc(vocab, words=words)
tagger.update(doc, gold)
random.shuffle(train_sents)
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
print('%d:\t%.3f\t%.3f' % (itn, scorer.uas, scorer.tags_acc))
nlp = Language(vocab=vocab, tagger=tagger, parser=parser)
nlp.end_training(model_dir)
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.las, scorer.tags_acc))
if __name__ == '__main__':
plac.call(main)