spaCy/spacy/syntax/iterators.pyx

53 lines
2.2 KiB
Cython
Raw Normal View History

from spacy.parts_of_speech cimport NOUN, PROPN, PRON
2016-11-24 13:47:20 +03:00
def english_noun_chunks(obj):
'''Detect base noun phrases from a dependency parse.
Works on both Doc and Span.'''
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj',
'attr', 'ROOT', 'root']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings['conj']
np_label = doc.vocab.strings['NP']
2016-11-24 13:47:20 +03:00
for i, word in enumerate(obj):
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
yield word.left_edge.i, word.i+1, np_label
elif word.pos == NOUN and word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
yield word.left_edge.i, word.i+1, np_label
# this iterator extracts spans headed by NOUNs starting from the left-most
# syntactic dependent until the NOUN itself
# for close apposition and measurement construction, the span is sometimes
# extended to the right of the NOUN
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
# just "eine Tasse", same for "das Thema Familie"
def german_noun_chunks(obj):
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'ROOT', 'root', 'cj', 'pd', 'og', 'app']
doc = obj.doc # Ensure works on both Doc and Span.
np_label = doc.vocab.strings['NP']
np_deps = set(doc.vocab.strings[label] for label in labels)
close_app = doc.vocab.strings['nk']
2016-05-03 18:19:05 +03:00
rbracket = 0
for i, word in enumerate(obj):
2016-05-03 18:19:05 +03:00
if i < rbracket:
continue
if word.pos in (NOUN, PROPN, PRON) and word.dep in np_deps:
rbracket = word.i+1
# try to extend the span to the right
# to capture close apposition/measurement constructions
for rdep in doc[word.i].rights:
if rdep.pos in (NOUN, PROPN) and rdep.dep == close_app:
rbracket = rdep.i+1
2016-05-04 08:40:38 +03:00
yield word.left_edge.i, rbracket, np_label
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks}