2015-01-16 09:09:46 +03:00
|
|
|
Quick Start
|
|
|
|
===========
|
|
|
|
|
|
|
|
|
|
|
|
Install
|
|
|
|
-------
|
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:currentmodule:: spacy
|
|
|
|
|
2015-01-23 18:53:55 +03:00
|
|
|
.. code:: bash
|
|
|
|
|
2015-01-16 09:09:46 +03:00
|
|
|
$ pip install spacy
|
|
|
|
$ python -m spacy.en.download
|
|
|
|
|
2015-01-23 18:53:55 +03:00
|
|
|
The download command fetches and installs the parser model and word representations,
|
|
|
|
which are too big to host on PyPi (about 100mb each). The data is installed within
|
|
|
|
the spacy.en package directory.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
|
|
|
Usage
|
|
|
|
-----
|
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
The main entry-point is :meth:`en.English.__call__`, which accepts a unicode string
|
|
|
|
as an argument, and returns a :py:class:`tokens.Tokens` object. You can
|
|
|
|
iterate over it to get :py:class:`tokens.Token` objects, which provide
|
|
|
|
a convenient API:
|
2015-01-16 09:09:46 +03:00
|
|
|
|
|
|
|
>>> from spacy.en import English
|
|
|
|
>>> nlp = English()
|
2015-01-24 09:27:50 +03:00
|
|
|
>>> tokens = nlp(u'I ate the pizza with anchovies.')
|
|
|
|
>>> pizza = tokens[3]
|
|
|
|
>>> (pizza.orth, pizza.orth_, pizza.head.lemma, pizza.head.lemma_)
|
|
|
|
... (14702, u'pizza', 14702, u'ate')
|
|
|
|
|
|
|
|
spaCy maps all strings to sequential integer IDs --- a common idiom in NLP.
|
|
|
|
If an attribute `Token.foo` is an integer ID, then `Token.foo_` is the string,
|
|
|
|
e.g. `pizza.orth_` and `pizza.orth` provide the integer ID and the string of
|
|
|
|
the original orthographic form of the word, with no string normalizations
|
|
|
|
applied.
|
|
|
|
|
|
|
|
.. note::
|
|
|
|
|
|
|
|
en.English.__call__ is stateful --- it has an important **side-effect**:
|
|
|
|
spaCy maps strings to sequential integers, so when it processes a new
|
|
|
|
word, the mapping table is updated.
|
2015-01-23 18:53:55 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
Future releases will feature a way to reconcile :py:class:`strings.StringStore`
|
|
|
|
mappings, but for now, you should only work with one instance of the pipeline
|
|
|
|
at a time.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
This issue only affects rare words. spaCy's pre-compiled lexicon has 260,000
|
|
|
|
words; the string IDs for these words will always be consistent.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
(Most of the) API at a glance
|
|
|
|
-----------------------------
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Process the string:**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:class:: spacy.en.English(self, data_dir=join(dirname(__file__), 'data'))
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: __call__(self, text: unicode, tag=True, parse=False) --> Tokens
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
+-----------------+--------------+--------------+
|
|
|
|
| Attribute | Type | Its API |
|
|
|
|
+=================+==============+==============+
|
|
|
|
| vocab | Vocab | __getitem__ |
|
|
|
|
+-----------------+--------------+--------------+
|
|
|
|
| vocab.strings | StingStore | __getitem__ |
|
|
|
|
+-----------------+--------------+--------------+
|
|
|
|
| tokenizer | Tokenizer | __call__ |
|
|
|
|
+-----------------+--------------+--------------+
|
|
|
|
| tagger | EnPosTagger | __call__ |
|
|
|
|
+-----------------+--------------+--------------+
|
|
|
|
| parser | GreedyParser | __call__ |
|
|
|
|
+-----------------+--------------+--------------+
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Get dict or numpy array:**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: tokens.Tokens.to_array(self, attr_ids: List[int]) --> numpy.ndarray[ndim=2, dtype=int32]
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: tokens.Tokens.count_by(self, attr_id: int) --> Dict[int, int]
|
2015-01-23 18:53:55 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Get Token objects**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: tokens.Tokens.__getitem__(self, i) --> Token
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: tokens.Tokens.__iter__(self) --> Iterator[Token]
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Embedded word representenations**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: tokens.Token.repvec
|
2015-01-23 18:53:55 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: lexeme.Lexeme.repvec
|
2015-01-23 18:53:55 +03:00
|
|
|
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Navigate dependency parse**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: nbor(self, i=1) --> Token
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: child(self, i=1) --> Token
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:method:: sibling(self, i=1) --> Token
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: head: Token
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: dep: int
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
**Align to original string**
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: string: unicode
|
|
|
|
|
|
|
|
Padded with original whitespace.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: length: int
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
Length, in unicode code-points. Equal to len(self.orth_).
|
|
|
|
|
|
|
|
self.string[self.length:] gets whitespace.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
.. py:attribute:: idx: int
|
|
|
|
|
|
|
|
Starting offset of word in the original string.
|
2015-01-16 09:09:46 +03:00
|
|
|
|
|
|
|
|
|
|
|
|
2015-01-16 11:04:03 +03:00
|
|
|
Features
|
|
|
|
--------
|
|
|
|
|
2015-01-24 09:27:50 +03:00
|
|
|
|
|
|
|
**Boolean features**
|
|
|
|
|
|
|
|
>>> lexeme = nlp.vocab[u'Apple']
|
|
|
|
>>> lexeme.is_alpha, is_upper
|
|
|
|
True, False
|
|
|
|
>>> tokens = nlp(u'Apple computers')
|
|
|
|
>>> tokens[0].is_alpha, tokens[0].is_upper
|
|
|
|
>>> True, False
|
|
|
|
>>> from spact.en.attrs import IS_ALPHA, IS_UPPER
|
|
|
|
>>> tokens.to_array((IS_ALPHA, IS_UPPER))[0]
|
|
|
|
array([1, 0])
|
|
|
|
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_alpha | :py:meth:`str.isalpha` |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_digit | :py:meth:`str.isdigit` |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_lower | :py:meth:`str.islower` |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_title | :py:meth:`str.istitle` |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_upper | :py:meth:`str.isupper` |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_ascii | all(ord(c) < 128 for c in string) |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| is_punct | all(unicodedata.category(c).startswith('P') for c in string) |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| like_url | Using various heuristics, does the string resemble a URL? |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| like_num | "Two", "10", "1,000", "10.54", "1/2" etc all match |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
|
|
|
|
**String-transform Features**
|
|
|
|
|
|
|
|
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| orth | The original string, unmodified. |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| lower | The original string, forced to lower-case |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| norm | The string after additional normalization |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| shape | Word shape, e.g. 10 --> dd, Garden --> Xxxx, Hi!5 --> Xx!d |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| prefix | A short slice from the start of the string. |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| suffix | A short slice from the end of the string. |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| lemma | The word's lemma, i.e. morphological suffixes removed |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
|
|
|
|
**Syntactic labels**
|
|
|
|
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| pos | The word's part-of-speech, from the Google Universal Tag Set |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| tag | A fine-grained morphosyntactic tag, e.g. VBZ, NNS, etc |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
| dep | Dependency type label between word and its head, e.g. subj |
|
|
|
|
+----------+---------------------------------------------------------------+
|
|
|
|
|
|
|
|
**Distributional**
|
|
|
|
|
|
|
|
+---------+-----------------------------------------------------------+
|
|
|
|
| cluster | Brown cluster ID of the word |
|
|
|
|
+---------+-----------------------------------------------------------+
|
|
|
|
| prob | Log probability of word, smoothed with Simple Good-Turing |
|
|
|
|
+---------+-----------------------------------------------------------+
|
|
|
|
|