2020-04-06 20:22:32 +03:00
|
|
|
# coding: utf8
|
2020-04-06 19:46:51 +03:00
|
|
|
import warnings
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import srsly
|
2020-04-06 21:51:12 +03:00
|
|
|
from numpy import zeros
|
2020-04-06 19:46:51 +03:00
|
|
|
from spacy.kb import KnowledgeBase
|
|
|
|
from spacy.vectors import Vectors
|
2020-04-06 21:51:12 +03:00
|
|
|
|
2020-04-06 19:46:51 +03:00
|
|
|
from spacy.language import Language
|
|
|
|
from spacy.pipeline import Pipe
|
|
|
|
from spacy.tests.util import make_tempdir
|
|
|
|
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
def nlp():
|
|
|
|
return Language()
|
2020-04-06 19:46:51 +03:00
|
|
|
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
def vectors():
|
|
|
|
data = zeros((3, 1), dtype="f")
|
2020-04-06 19:46:51 +03:00
|
|
|
keys = ["cat", "dog", "rat"]
|
2020-04-06 21:51:12 +03:00
|
|
|
return Vectors(data=data, keys=keys)
|
2020-04-06 19:46:51 +03:00
|
|
|
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
def custom_pipe():
|
2020-04-06 19:46:51 +03:00
|
|
|
# create dummy pipe partially implementing interface -- only want to test to_disk
|
|
|
|
class SerializableDummy(object):
|
|
|
|
def __init__(self, **cfg):
|
|
|
|
if cfg:
|
|
|
|
self.cfg = cfg
|
|
|
|
else:
|
|
|
|
self.cfg = None
|
|
|
|
super(SerializableDummy, self).__init__()
|
|
|
|
|
|
|
|
def to_bytes(self, exclude=tuple(), disable=None, **kwargs):
|
|
|
|
return srsly.msgpack_dumps({"dummy": srsly.json_dumps(None)})
|
|
|
|
|
|
|
|
def from_bytes(self, bytes_data, exclude):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def to_disk(self, path, exclude=tuple(), **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def from_disk(self, path, exclude=tuple(), **kwargs):
|
|
|
|
return self
|
|
|
|
|
|
|
|
class MyPipe(Pipe):
|
|
|
|
def __init__(self, vocab, model=True, **cfg):
|
|
|
|
if cfg:
|
|
|
|
self.cfg = cfg
|
|
|
|
else:
|
|
|
|
self.cfg = None
|
|
|
|
self.model = SerializableDummy()
|
|
|
|
self.vocab = SerializableDummy()
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
return MyPipe(None)
|
2020-04-06 19:46:51 +03:00
|
|
|
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
def tagger():
|
2020-04-06 19:46:51 +03:00
|
|
|
nlp = Language()
|
|
|
|
nlp.add_pipe(nlp.create_pipe("tagger"))
|
|
|
|
tagger = nlp.get_pipe("tagger")
|
|
|
|
# need to add model for two reasons:
|
|
|
|
# 1. no model leads to error in serialization,
|
|
|
|
# 2. the affected line is the one for model serialization
|
|
|
|
tagger.begin_training(pipeline=nlp.pipeline)
|
2020-04-06 21:51:12 +03:00
|
|
|
return tagger
|
2020-04-06 19:46:51 +03:00
|
|
|
|
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
def entity_linker():
|
2020-04-06 19:46:51 +03:00
|
|
|
nlp = Language()
|
|
|
|
nlp.add_pipe(nlp.create_pipe("entity_linker"))
|
|
|
|
entity_linker = nlp.get_pipe("entity_linker")
|
|
|
|
# need to add model for two reasons:
|
|
|
|
# 1. no model leads to error in serialization,
|
|
|
|
# 2. the affected line is the one for model serialization
|
|
|
|
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
|
|
|
|
entity_linker.set_kb(kb)
|
|
|
|
entity_linker.begin_training(pipeline=nlp.pipeline)
|
2020-04-06 21:51:12 +03:00
|
|
|
return entity_linker
|
|
|
|
|
2020-04-06 19:46:51 +03:00
|
|
|
|
2020-04-06 21:51:12 +03:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"obj",
|
|
|
|
[nlp(), vectors(), custom_pipe(), tagger(), entity_linker()],
|
|
|
|
ids=["nlp", "vectors", "custom_pipe", "tagger", "entity_linker"],
|
|
|
|
)
|
|
|
|
def test_to_disk_resource_warning(obj):
|
2020-04-06 19:46:51 +03:00
|
|
|
with make_tempdir() as d:
|
2020-04-06 21:51:12 +03:00
|
|
|
with warnings.catch_warnings(record=True) as warnings_list:
|
2020-04-06 19:46:51 +03:00
|
|
|
warnings.filterwarnings("always", category=ResourceWarning)
|
2020-04-06 21:51:12 +03:00
|
|
|
obj.to_disk(d)
|
|
|
|
assert len(warnings_list) == 0
|