2016-10-31 21:04:15 +03:00
|
|
|
//- 💫 DOCS > API > SPAN
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
include ../_includes/_mixins
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
p A slice from a #[+api("doc") #[code Doc]] object.
|
2016-10-31 21:04:15 +03:00
|
|
|
|
|
|
|
+h(2, "init") Span.__init__
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p Create a Span object from the #[code slice doc[start : end]].
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
span = doc[1:4]
|
2017-05-19 20:59:02 +03:00
|
|
|
assert [t.text for t in span] == [u'it', u'back', u'!']
|
2017-05-19 01:31:31 +03:00
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code doc]
|
|
|
|
+cell #[code Doc]
|
|
|
|
+cell The parent document.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code start]
|
|
|
|
+cell int
|
|
|
|
+cell The index of the first token of the span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code end]
|
|
|
|
+cell int
|
|
|
|
+cell The index of the first token after the span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code label]
|
|
|
|
+cell int
|
|
|
|
+cell A label to attach to the span, e.g. for named entities.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code vector]
|
2017-08-19 13:44:23 +03:00
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell A meaning representation of the span.
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Span]
|
|
|
|
+cell The newly constructed object.
|
|
|
|
|
|
|
|
+h(2, "getitem") Span.__getitem__
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p Get a #[code Token] object.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
span = doc[1:4]
|
|
|
|
assert span[1].text == 'back'
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code i]
|
|
|
|
+cell int
|
|
|
|
+cell The index of the token within the span.
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell The token at #[code span[i]].
|
|
|
|
|
|
|
|
p Get a #[code Span] object.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
span = doc[1:4]
|
|
|
|
assert span[1:3].text == 'back!'
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code start_end]
|
|
|
|
+cell tuple
|
|
|
|
+cell The slice of the span to get.
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Span]
|
|
|
|
+cell The span at #[code span[start : end]].
|
|
|
|
|
|
|
|
+h(2, "iter") Span.__iter__
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p Iterate over #[code Token] objects.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
span = doc[1:4]
|
2017-05-19 20:59:02 +03:00
|
|
|
assert [t.text for t in span] == ['it', 'back', '!']
|
2017-05-19 01:31:31 +03:00
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell yields
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell A #[code Token] object.
|
|
|
|
|
|
|
|
+h(2, "len") Span.__len__
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p Get the number of tokens in the span.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
span = doc[1:4]
|
|
|
|
assert len(span) == 3
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell int
|
|
|
|
+cell The number of tokens in the span.
|
|
|
|
|
2017-10-10 05:23:37 +03:00
|
|
|
+h(2, "set_extension") Span.set_extension
|
|
|
|
+tag classmethod
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
p
|
|
|
|
| Define a custom attribute on the #[code Span] which becomes available via
|
|
|
|
| #[code Span._]. For details, see the documentation on
|
|
|
|
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 03:30:40 +03:00
|
|
|
from spacy.tokens import Span
|
2018-05-03 01:39:22 +03:00
|
|
|
city_getter = lambda span: any(city in span.text for city in ('New York', 'Paris', 'Berlin'))
|
2017-10-10 05:23:37 +03:00
|
|
|
Span.set_extension('has_city', getter=city_getter)
|
|
|
|
doc = nlp(u'I like New York in Autumn')
|
|
|
|
assert doc[1:4]._.has_city
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code name]
|
|
|
|
+cell unicode
|
|
|
|
+cell
|
|
|
|
| Name of the attribute to set by the extension. For example,
|
|
|
|
| #[code 'my_attr'] will be available as #[code span._.my_attr].
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code default]
|
|
|
|
+cell -
|
|
|
|
+cell
|
|
|
|
| Optional default value of the attribute if no getter or method
|
|
|
|
| is defined.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code method]
|
|
|
|
+cell callable
|
|
|
|
+cell
|
|
|
|
| Set a custom method on the object, for example
|
|
|
|
| #[code span._.compare(other_span)].
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code getter]
|
|
|
|
+cell callable
|
|
|
|
+cell
|
|
|
|
| Getter function that takes the object and returns an attribute
|
|
|
|
| value. Is called when the user accesses the #[code ._] attribute.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code setter]
|
|
|
|
+cell callable
|
|
|
|
+cell
|
|
|
|
| Setter function that takes the #[code Span] and a value, and
|
|
|
|
| modifies the object. Is called when the user writes to the
|
|
|
|
| #[code Span._] attribute.
|
|
|
|
|
|
|
|
+h(2, "get_extension") Span.get_extension
|
|
|
|
+tag classmethod
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
p
|
|
|
|
| Look up a previously registered extension by name. Returns a 4-tuple
|
|
|
|
| #[code.u-break (default, method, getter, setter)] if the extension is
|
|
|
|
| registered. Raises a #[code KeyError] otherwise.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 03:30:40 +03:00
|
|
|
from spacy.tokens import Span
|
2017-10-10 05:23:37 +03:00
|
|
|
Span.set_extension('is_city', default=False)
|
|
|
|
extension = Span.get_extension('is_city')
|
|
|
|
assert extension == (False, None, None, None)
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code name]
|
|
|
|
+cell unicode
|
|
|
|
+cell Name of the extension.
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell tuple
|
|
|
|
+cell
|
|
|
|
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
|
|
|
| extension.
|
|
|
|
|
|
|
|
+h(2, "has_extension") Span.has_extension
|
|
|
|
+tag classmethod
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
p Check whether an extension has been registered on the #[code Span] class.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 03:30:40 +03:00
|
|
|
from spacy.tokens import Span
|
2017-10-10 05:23:37 +03:00
|
|
|
Span.set_extension('is_city', default=False)
|
|
|
|
assert Span.has_extension('is_city')
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code name]
|
|
|
|
+cell unicode
|
|
|
|
+cell Name of the extension to check.
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell bool
|
|
|
|
+cell Whether the extension has been registered.
|
|
|
|
|
2018-07-21 16:51:28 +03:00
|
|
|
+h(2, "remove_extension") Span.remove_extension
|
|
|
|
+tag classmethod
|
|
|
|
+tag-new("2.0.12")
|
|
|
|
|
|
|
|
p Remove a previously registered extension.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
from spacy.tokens import Span
|
|
|
|
Span.set_extension('is_city', default=False)
|
|
|
|
removed = Span.remove_extension('is_city')
|
|
|
|
assert not Span.has_extension('is_city')
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code name]
|
|
|
|
+cell unicode
|
|
|
|
+cell Name of the extension.
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell tuple
|
|
|
|
+cell
|
|
|
|
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
|
|
|
| removed extension.
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+h(2, "similarity") Span.similarity
|
|
|
|
+tag method
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("vectors")
|
2016-10-31 21:04:15 +03:00
|
|
|
|
|
|
|
p
|
|
|
|
| Make a semantic similarity estimate. The default estimate is cosine
|
|
|
|
| similarity using an average of word vectors.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
2017-05-19 20:59:02 +03:00
|
|
|
doc = nlp(u'green apples and red oranges')
|
|
|
|
green_apples = doc[:2]
|
|
|
|
red_oranges = doc[3:]
|
|
|
|
apples_oranges = green_apples.similarity(red_oranges)
|
|
|
|
oranges_apples = red_oranges.similarity(green_apples)
|
2017-05-19 01:31:31 +03:00
|
|
|
assert apples_oranges == oranges_apples
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code other]
|
|
|
|
+cell -
|
|
|
|
+cell
|
2016-11-20 20:02:45 +03:00
|
|
|
| The object to compare with. By default, accepts #[code Doc],
|
|
|
|
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell float
|
|
|
|
+cell A scalar similarity score. Higher is more similar.
|
|
|
|
|
2017-10-27 16:41:45 +03:00
|
|
|
+h(2, "get_lca_matrix") Span.get_lca_matrix
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p
|
|
|
|
| Calculates the lowest common ancestor matrix for a given #[code Span].
|
|
|
|
| Returns LCA matrix containing the integer index of the ancestor, or
|
|
|
|
| #[code -1] if no common ancestor is found, e.g. if span excludes a
|
|
|
|
| necessary ancestor.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn')
|
|
|
|
span = doc[1:4]
|
|
|
|
matrix = span.get_lca_matrix()
|
|
|
|
# array([[0, 0, 0], [0, 1, 2], [0, 2, 2]], dtype=int32)
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
|
|
|
|
+cell The lowest common ancestor matrix of the #[code Span].
|
|
|
|
|
|
|
|
|
2017-08-19 13:45:28 +03:00
|
|
|
+h(2, "to_array") Span.to_array
|
|
|
|
+tag method
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
p
|
|
|
|
| Given a list of #[code M] attribute IDs, export the tokens to a numpy
|
|
|
|
| #[code ndarray] of shape #[code (N, M)], where #[code N] is the length of
|
|
|
|
| the document. The values will be 32-bit integers.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
span = doc[2:3]
|
|
|
|
# All strings mapped to integers, for easy export to numpy
|
|
|
|
np_array = span.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code attr_ids]
|
|
|
|
+cell list
|
|
|
|
+cell A list of attribute ID ints.
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-08-19 13:45:28 +03:00
|
|
|
+cell returns
|
|
|
|
+cell #[code.u-break numpy.ndarray[long, ndim=2]]
|
|
|
|
+cell
|
|
|
|
| A feature matrix, with one row per word, and one column per
|
|
|
|
| attribute indicated in the input #[code attr_ids].
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+h(2, "merge") Span.merge
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
p Retokenize the document, such that the span is merged into a single token.
|
|
|
|
|
2017-08-19 13:45:16 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
2017-10-23 11:38:13 +03:00
|
|
|
span = doc[2:4]
|
2017-08-19 13:45:16 +03:00
|
|
|
span.merge()
|
|
|
|
assert len(doc) == 6
|
|
|
|
assert doc[2].text == 'New York'
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code **attributes]
|
|
|
|
+cell -
|
|
|
|
+cell
|
|
|
|
| Attributes to assign to the merged token. By default, attributes
|
|
|
|
| are inherited from the syntactic root token of the span.
|
|
|
|
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell The newly merged token.
|
|
|
|
|
💫 Port master changes over to develop (#2979)
* Create aryaprabhudesai.md (#2681)
* Update _install.jade (#2688)
Typo fix: "models" -> "model"
* Add FAC to spacy.explain (resolves #2706)
* Remove docstrings for deprecated arguments (see #2703)
* When calling getoption() in conftest.py, pass a default option (#2709)
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* update bengali token rules for hyphen and digits (#2731)
* Less norm computations in token similarity (#2730)
* Less norm computations in token similarity
* Contributor agreement
* Remove ')' for clarity (#2737)
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* added contributor agreement for mbkupfer (#2738)
* Basic support for Telugu language (#2751)
* Lex _attrs for polish language (#2750)
* Signed spaCy contributor agreement
* Added polish version of english lex_attrs
* Introduces a bulk merge function, in order to solve issue #653 (#2696)
* Fix comment
* Introduce bulk merge to increase performance on many span merges
* Sign contributor agreement
* Implement pull request suggestions
* Describe converters more explicitly (see #2643)
* Add multi-threading note to Language.pipe (resolves #2582) [ci skip]
* Fix formatting
* Fix dependency scheme docs (closes #2705) [ci skip]
* Don't set stop word in example (closes #2657) [ci skip]
* Add words to portuguese language _num_words (#2759)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Update Indonesian model (#2752)
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
* Fixed spaCy+Keras example (#2763)
* bug fixes in keras example
* created contributor agreement
* Adding French hyphenated first name (#2786)
* Fix typo (closes #2784)
* Fix typo (#2795) [ci skip]
Fixed typo on line 6 "regcognizer --> recognizer"
* Adding basic support for Sinhala language. (#2788)
* adding Sinhala language package, stop words, examples and lex_attrs.
* Adding contributor agreement
* Updating contributor agreement
* Also include lowercase norm exceptions
* Fix error (#2802)
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
* Add charlax's contributor agreement (#2805)
* agreement of contributor, may I introduce a tiny pl languge contribution (#2799)
* Contributors agreement
* Contributors agreement
* Contributors agreement
* Add jupyter=True to displacy.render in documentation (#2806)
* Revert "Also include lowercase norm exceptions"
This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e.
* Remove deprecated encoding argument to msgpack
* Set up dependency tree pattern matching skeleton (#2732)
* Fix bug when too many entity types. Fixes #2800
* Fix Python 2 test failure
* Require older msgpack-numpy
* Restore encoding arg on msgpack-numpy
* Try to fix version pin for msgpack-numpy
* Update Portuguese Language (#2790)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Correct error in spacy universe docs concerning spacy-lookup (#2814)
* Update Keras Example for (Parikh et al, 2016) implementation (#2803)
* bug fixes in keras example
* created contributor agreement
* baseline for Parikh model
* initial version of parikh 2016 implemented
* tested asymmetric models
* fixed grevious error in normalization
* use standard SNLI test file
* begin to rework parikh example
* initial version of running example
* start to document the new version
* start to document the new version
* Update Decompositional Attention.ipynb
* fixed calls to similarity
* updated the README
* import sys package duh
* simplified indexing on mapping word to IDs
* stupid python indent error
* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
* Fix typo (closes #2815) [ci skip]
* Update regex version dependency
* Set version to 2.0.13.dev3
* Skip seemingly problematic test
* Remove problematic test
* Try previous version of regex
* Revert "Remove problematic test"
This reverts commit bdebbef45552d698d390aa430b527ee27830f11b.
* Unskip test
* Try older version of regex
* 💫 Update training examples and use minibatching (#2830)
<!--- Provide a general summary of your changes in the title. -->
## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.
### Types of change
enhancements
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Visual C++ link updated (#2842) (closes #2841) [ci skip]
* New landing page
* Add contribution agreement
* Correcting lang/ru/examples.py (#2845)
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Set version to 2.0.13.dev4
* Add Persian(Farsi) language support (#2797)
* Also include lowercase norm exceptions
* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors
* Rule-based French Lemmatizer (#2818)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Set version to 2.0.13
* Fix formatting and consistency
* Update docs for new version [ci skip]
* Increment version [ci skip]
* Add info on wheels [ci skip]
* Adding "This is a sentence" example to Sinhala (#2846)
* Add wheels badge
* Update badge [ci skip]
* Update README.rst [ci skip]
* Update murmurhash pin
* Increment version to 2.0.14.dev0
* Update GPU docs for v2.0.14
* Add wheel to setup_requires
* Import prefer_gpu and require_gpu functions from Thinc
* Add tests for prefer_gpu() and require_gpu()
* Update requirements and setup.py
* Workaround bug in thinc require_gpu
* Set version to v2.0.14
* Update push-tag script
* Unhack prefer_gpu
* Require thinc 6.10.6
* Update prefer_gpu and require_gpu docs [ci skip]
* Fix specifiers for GPU
* Set version to 2.0.14.dev1
* Set version to 2.0.14
* Update Thinc version pin
* Increment version
* Fix msgpack-numpy version pin
* Increment version
* Update version to 2.0.16
* Update version [ci skip]
* Redundant ')' in the Stop words' example (#2856)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Documentation improvement regarding joblib and SO (#2867)
Some documentation improvements
## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)
### Types of change
Documentation
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* raise error when setting overlapping entities as doc.ents (#2880)
* Fix out-of-bounds access in NER training
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
* Change PyThaiNLP Url (#2876)
* Fix missing comma
* Add example showing a fix-up rule for space entities
* Set version to 2.0.17.dev0
* Update regex version
* Revert "Update regex version"
This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a.
* Try setting older regex version, to align with conda
* Set version to 2.0.17
* Add spacy-js to universe [ci-skip]
* Add spacy-raspberry to universe (closes #2889)
* Add script to validate universe json [ci skip]
* Removed space in docs + added contributor indo (#2909)
* - removed unneeded space in documentation
* - added contributor info
* Allow input text of length up to max_length, inclusive (#2922)
* Include universe spec for spacy-wordnet component (#2919)
* feat: include universe spec for spacy-wordnet component
* chore: include spaCy contributor agreement
* Minor formatting changes [ci skip]
* Fix image [ci skip]
Twitter URL doesn't work on live site
* Check if the word is in one of the regular lists specific to each POS (#2886)
* 💫 Create random IDs for SVGs to prevent ID clashes (#2927)
Resolves #2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix typo [ci skip]
* fixes symbolic link on py3 and windows (#2949)
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes #2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
* Fix formatting
* Update universe [ci skip]
* Catalan Language Support (#2940)
* Catalan language Support
* Ddding Catalan to documentation
* Sort languages alphabetically [ci skip]
* Update tests for pytest 4.x (#2965)
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix regex pin to harmonize with conda (#2964)
* Update README.rst
* Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977)
Fixes #2976
* Fix typo
* Fix typo
* Remove duplicate file
* Require thinc 7.0.0.dev2
Fixes bug in gpu_ops that would use cupy instead of numpy on CPU
* Add missing import
* Fix error IDs
* Fix tests
2018-11-29 18:30:29 +03:00
|
|
|
+h(2, "ents") Span.ents
|
|
|
|
+tag property
|
|
|
|
+tag-model("NER")
|
|
|
|
|
|
|
|
p
|
|
|
|
| Iterate over the entities in the span. Yields named-entity
|
|
|
|
| #[code Span] objects, if the entity recognizer has been applied to the
|
|
|
|
| parent document.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
|
|
|
span = doc[0:6]
|
|
|
|
ents = list(span.ents)
|
|
|
|
assert ents[0].label == 346
|
|
|
|
assert ents[0].label_ == 'PERSON'
|
|
|
|
assert ents[0].text == 'Mr. Best'
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row("foot")
|
|
|
|
+cell yields
|
|
|
|
+cell #[code Span]
|
|
|
|
+cell Entities in the document.
|
|
|
|
|
|
|
|
|
2017-10-23 11:38:27 +03:00
|
|
|
+h(2, "as_doc") Span.as_doc
|
|
|
|
|
|
|
|
p
|
|
|
|
| Create a #[code Doc] object view of the #[code Span]'s data. Mostly
|
|
|
|
| useful for C-typed interfaces.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
span = doc[2:4]
|
|
|
|
doc2 = span.as_doc()
|
|
|
|
assert doc2.text == 'New York'
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell #[code Doc]
|
|
|
|
+cell A #[code Doc] object of the #[code Span]'s content.
|
|
|
|
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+h(2, "root") Span.root
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("parse")
|
2016-10-31 21:04:15 +03:00
|
|
|
|
|
|
|
p
|
|
|
|
| The token within the span that's highest in the parse tree. If there's a
|
2017-08-20 13:00:15 +03:00
|
|
|
| tie, the earliest is preferred.
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+aside-code("Example").
|
2017-05-19 20:59:02 +03:00
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
i, like, new, york, in_, autumn, dot = range(len(doc))
|
|
|
|
assert doc[new].head.text == 'York'
|
|
|
|
assert doc[york].head.text == 'like'
|
|
|
|
new_york = doc[new:york+1]
|
2017-05-19 01:31:31 +03:00
|
|
|
assert new_york.root.text == 'York'
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell returns
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell The root token.
|
|
|
|
|
|
|
|
+h(2, "lefts") Span.lefts
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("parse")
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-10-27 18:07:26 +03:00
|
|
|
p Tokens that are to the left of the span, whose heads are within the span.
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-05-19 20:59:02 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
lefts = [t.text for t in doc[3:7].lefts]
|
|
|
|
assert lefts == [u'New']
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell yields
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell A left-child of a token of the span.
|
|
|
|
|
|
|
|
+h(2, "rights") Span.rights
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("parse")
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-10-27 18:07:26 +03:00
|
|
|
p Tokens that are to the right of the span, whose heads are within the span.
|
2016-10-31 21:04:15 +03:00
|
|
|
|
2017-05-19 20:59:02 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
rights = [t.text for t in doc[2:4].rights]
|
|
|
|
assert rights == [u'in']
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell yields
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell A right-child of a token of the span.
|
|
|
|
|
2017-10-27 18:07:26 +03:00
|
|
|
+h(2, "n_lefts") Span.n_lefts
|
|
|
|
+tag property
|
|
|
|
+tag-model("parse")
|
|
|
|
|
|
|
|
p
|
|
|
|
| The number of tokens that are to the left of the span, whose heads are
|
|
|
|
| within the span.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
assert doc[3:7].n_lefts == 1
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell int
|
|
|
|
+cell The number of left-child tokens.
|
|
|
|
|
|
|
|
+h(2, "n_rights") Span.n_rights
|
|
|
|
+tag property
|
|
|
|
+tag-model("parse")
|
|
|
|
|
|
|
|
p
|
|
|
|
| The number of tokens that are to the right of the span, whose heads are
|
|
|
|
| within the span.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like New York in Autumn.')
|
|
|
|
assert doc[2:4].n_rights == 1
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row("foot")
|
|
|
|
+cell returns
|
|
|
|
+cell int
|
|
|
|
+cell The number of right-child tokens.
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+h(2, "subtree") Span.subtree
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("parse")
|
2016-10-31 21:04:15 +03:00
|
|
|
|
|
|
|
p Tokens that descend from tokens in the span, but fall outside it.
|
|
|
|
|
2017-05-19 20:59:02 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
subtree = [t.text for t in doc[:3].subtree]
|
|
|
|
assert subtree == [u'Give', u'it', u'back', u'!']
|
|
|
|
|
2016-10-31 21:04:15 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 01:02:34 +03:00
|
|
|
+cell yields
|
2016-10-31 21:04:15 +03:00
|
|
|
+cell #[code Token]
|
|
|
|
+cell A descendant of a token within the span.
|
2017-05-19 01:31:31 +03:00
|
|
|
|
2017-05-19 19:47:46 +03:00
|
|
|
+h(2, "has_vector") Span.has_vector
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("vectors")
|
2017-05-19 19:47:46 +03:00
|
|
|
|
|
|
|
p
|
|
|
|
| A boolean value indicating whether a word vector is associated with the
|
|
|
|
| object.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-19 20:59:02 +03:00
|
|
|
doc = nlp(u'I like apples')
|
|
|
|
assert doc[1:].has_vector
|
2017-05-19 19:47:46 +03:00
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 19:47:46 +03:00
|
|
|
+cell returns
|
|
|
|
+cell bool
|
|
|
|
+cell Whether the span has a vector data attached.
|
|
|
|
|
|
|
|
+h(2, "vector") Span.vector
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("vectors")
|
2017-05-19 19:47:46 +03:00
|
|
|
|
|
|
|
p
|
|
|
|
| A real-valued meaning representation. Defaults to an average of the
|
|
|
|
| token vectors.
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-19 20:59:02 +03:00
|
|
|
doc = nlp(u'I like apples')
|
|
|
|
assert doc[1:].vector.dtype == 'float32'
|
|
|
|
assert doc[1:].vector.shape == (300,)
|
2017-05-19 19:47:46 +03:00
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 19:47:46 +03:00
|
|
|
+cell returns
|
2017-08-19 13:44:23 +03:00
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
2017-05-19 19:47:46 +03:00
|
|
|
+cell A 1D numpy array representing the span's semantics.
|
|
|
|
|
|
|
|
+h(2, "vector_norm") Span.vector_norm
|
|
|
|
+tag property
|
2017-05-19 21:24:46 +03:00
|
|
|
+tag-model("vectors")
|
2017-05-19 19:47:46 +03:00
|
|
|
|
|
|
|
p
|
|
|
|
| The L2 norm of the span's vector representation.
|
|
|
|
|
2017-05-19 20:59:02 +03:00
|
|
|
+aside-code("Example").
|
|
|
|
doc = nlp(u'I like apples')
|
|
|
|
doc[1:].vector_norm # 4.800883928527915
|
|
|
|
doc[2:].vector_norm # 6.895897646384268
|
|
|
|
assert doc[1:].vector_norm != doc[2:].vector_norm
|
|
|
|
|
2017-05-19 19:47:46 +03:00
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 15:27:22 +03:00
|
|
|
+row("foot")
|
2017-05-19 19:47:46 +03:00
|
|
|
+cell returns
|
|
|
|
+cell float
|
|
|
|
+cell The L2 norm of the vector representation.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+h(2, "attributes") Attributes
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
+row
|
|
|
|
+cell #[code doc]
|
|
|
|
+cell #[code Doc]
|
|
|
|
+cell The parent document.
|
|
|
|
|
2017-05-19 19:47:46 +03:00
|
|
|
+row
|
|
|
|
+cell #[code sent]
|
|
|
|
+cell #[code Span]
|
|
|
|
+cell The sentence span that this span is a part of.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+row
|
|
|
|
+cell #[code start]
|
|
|
|
+cell int
|
|
|
|
+cell The token offset for the start of the span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code end]
|
|
|
|
+cell int
|
|
|
|
+cell The token offset for the end of the span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code start_char]
|
|
|
|
+cell int
|
|
|
|
+cell The character offset for the start of the span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code end_char]
|
|
|
|
+cell int
|
|
|
|
+cell The character offset for the end of the span.
|
|
|
|
|
2017-05-19 19:47:46 +03:00
|
|
|
+row
|
|
|
|
+cell #[code text]
|
|
|
|
+cell unicode
|
|
|
|
+cell A unicode representation of the span text.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code text_with_ws]
|
|
|
|
+cell unicode
|
|
|
|
+cell
|
|
|
|
| The text content of the span with a trailing whitespace character
|
|
|
|
| if the last token has one.
|
|
|
|
|
2017-10-27 16:41:45 +03:00
|
|
|
+row
|
|
|
|
+cell #[code orth]
|
|
|
|
+cell int
|
|
|
|
+cell ID of the verbatim text content.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code orth_]
|
|
|
|
+cell unicode
|
|
|
|
+cell
|
2017-11-14 03:27:20 +03:00
|
|
|
| Verbatim text content (identical to #[code Span.text]). Exists
|
2017-10-27 16:41:45 +03:00
|
|
|
| mostly for consistency with the other attributes.
|
|
|
|
|
2017-05-19 01:31:31 +03:00
|
|
|
+row
|
|
|
|
+cell #[code label]
|
|
|
|
+cell int
|
|
|
|
+cell The span's label.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code label_]
|
|
|
|
+cell unicode
|
|
|
|
+cell The span's label.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code lemma_]
|
|
|
|
+cell unicode
|
|
|
|
+cell The span's lemma.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code ent_id]
|
|
|
|
+cell int
|
2017-05-28 20:25:34 +03:00
|
|
|
+cell The hash value of the named entity the token is an instance of.
|
2017-05-19 01:31:31 +03:00
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code ent_id_]
|
|
|
|
+cell unicode
|
|
|
|
+cell The string ID of the named entity the token is an instance of.
|
2017-10-27 18:07:26 +03:00
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code sentiment]
|
|
|
|
+cell float
|
|
|
|
+cell
|
|
|
|
| A scalar value indicating the positivity or negativity of the
|
|
|
|
| span.
|
|
|
|
|
|
|
|
+row
|
|
|
|
+cell #[code _]
|
|
|
|
+cell #[code Underscore]
|
|
|
|
+cell
|
|
|
|
| User space for adding custom
|
|
|
|
| #[+a("/usage/processing-pipelines#custom-components-attributes") attribute extensions].
|