mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
232 lines
5.4 KiB
Plaintext
232 lines
5.4 KiB
Plaintext
|
{# This is a template for training configs used for the quickstart widget in
|
||
|
the docs and the init config command. It encodes various best practices and
|
||
|
can help generate the best possible configuration, given a user's requirements. #}
|
||
|
# This is an auto-generated config for training a model with 'spacy train'
|
||
|
[paths]
|
||
|
train = ""
|
||
|
dev = ""
|
||
|
|
||
|
[nlp]
|
||
|
lang = "{{ lang }}"
|
||
|
pipeline = {{ pipeline|safe }}
|
||
|
tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"}
|
||
|
|
||
|
[components]
|
||
|
|
||
|
{# TRANSFORMER PIPELINE #}
|
||
|
{%- if has_transformer -%}
|
||
|
[components.transformer]
|
||
|
factory = "transformer"
|
||
|
|
||
|
[components.transformer.model]
|
||
|
@architectures = "spacy-transformers.TransformerModel.v1"
|
||
|
{#- name = {{ transformer_info["name"] }} #}
|
||
|
name = "roberta-base"
|
||
|
tokenizer_config = {"use_fast": true}
|
||
|
|
||
|
[components.transformer.model.get_spans]
|
||
|
@span_getters = "strided_spans.v1"
|
||
|
window = 128
|
||
|
stride = 96
|
||
|
|
||
|
{% if "tagger" in components %}
|
||
|
[components.tagger]
|
||
|
factory = "tagger"
|
||
|
|
||
|
[components.tagger.model]
|
||
|
@architectures = "spacy.Tagger.v1"
|
||
|
nO = null
|
||
|
|
||
|
[components.tagger.model.tok2vec]
|
||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||
|
grad_factor = 1.0
|
||
|
|
||
|
[components.tagger.model.tok2vec.pooling]
|
||
|
@layers = "reduce_mean.v1"
|
||
|
{%- endif %}
|
||
|
|
||
|
{% if "parser" in components -%}
|
||
|
[components.parser]
|
||
|
factory = "parser"
|
||
|
|
||
|
[components.parser.model]
|
||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||
|
nr_feature_tokens = 8
|
||
|
hidden_width = 128
|
||
|
maxout_pieces = 3
|
||
|
use_upper = false
|
||
|
nO = null
|
||
|
|
||
|
[components.parser.model.tok2vec]
|
||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||
|
grad_factor = 1.0
|
||
|
|
||
|
[components.parser.model.tok2vec.pooling]
|
||
|
@layers = "reduce_mean.v1"
|
||
|
{%- endif %}
|
||
|
|
||
|
{% if "ner" in components -%}
|
||
|
[components.ner]
|
||
|
factory = "ner"
|
||
|
|
||
|
[components.ner.model]
|
||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||
|
nr_feature_tokens = 3
|
||
|
hidden_width = 64
|
||
|
maxout_pieces = 2
|
||
|
use_upper = false
|
||
|
nO = null
|
||
|
|
||
|
[components.ner.model.tok2vec]
|
||
|
@architectures = "spacy-transformers.TransformerListener.v1"
|
||
|
grad_factor = 1.0
|
||
|
|
||
|
[components.ner.model.tok2vec.pooling]
|
||
|
@layers = "reduce_mean.v1"
|
||
|
{% endif -%}
|
||
|
|
||
|
{# NON-TRANSFORMER PIPELINE #}
|
||
|
{% else -%}
|
||
|
|
||
|
{%- if hardware == "gpu" -%}
|
||
|
# There are no recommended transformer weights available for language '{{ lang }}'
|
||
|
# yet, so the pipeline described here is not transformer-based.
|
||
|
{%- endif %}
|
||
|
|
||
|
[components.tok2vec]
|
||
|
factory = "tok2vec"
|
||
|
|
||
|
[components.tok2vec.model]
|
||
|
@architectures = "spacy.Tok2Vec.v1"
|
||
|
|
||
|
[components.tok2vec.model.embed]
|
||
|
@architectures = "spacy.MultiHashEmbed.v1"
|
||
|
width = ${components.tok2vec.model.encode:width}
|
||
|
rows = {{ 2000 if optimize == "efficiency" else 7000 }}
|
||
|
also_embed_subwords = {{ true if has_letters else false }}
|
||
|
also_use_static_vectors = {{ true if optimize == "accuracy" else false }}
|
||
|
|
||
|
[components.tok2vec.model.encode]
|
||
|
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||
|
width = {{ 96 if optimize == "efficiency" else 256 }}
|
||
|
depth = {{ 4 if optimize == "efficiency" else 8 }}
|
||
|
window_size = 1
|
||
|
maxout_pieces = 3
|
||
|
|
||
|
{% if "tagger" in components %}
|
||
|
[components.tagger]
|
||
|
factory = "tagger"
|
||
|
|
||
|
[components.tagger.model]
|
||
|
@architectures = "spacy.Tagger.v1"
|
||
|
nO = null
|
||
|
|
||
|
[components.tagger.model.tok2vec]
|
||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||
|
width = ${components.tok2vec.model.encode:width}
|
||
|
{%- endif %}
|
||
|
|
||
|
{% if "parser" in components -%}
|
||
|
[components.parser]
|
||
|
factory = "parser"
|
||
|
|
||
|
[components.parser.model]
|
||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||
|
nr_feature_tokens = 8
|
||
|
hidden_width = 128
|
||
|
maxout_pieces = 3
|
||
|
use_upper = true
|
||
|
nO = null
|
||
|
|
||
|
[components.parser.model.tok2vec]
|
||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||
|
width = ${components.tok2vec.model.encode:width}
|
||
|
{%- endif %}
|
||
|
|
||
|
{% if "ner" in components %}
|
||
|
[components.ner]
|
||
|
factory = "ner"
|
||
|
|
||
|
[components.ner.model]
|
||
|
@architectures = "spacy.TransitionBasedParser.v1"
|
||
|
nr_feature_tokens = 6
|
||
|
hidden_width = 64
|
||
|
maxout_pieces = 2
|
||
|
use_upper = true
|
||
|
nO = null
|
||
|
|
||
|
[components.ner.model.tok2vec]
|
||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||
|
width = ${components.tok2vec.model.encode:width}
|
||
|
{% endif %}
|
||
|
{% endif %}
|
||
|
|
||
|
{% for pipe in components %}
|
||
|
{% if pipe not in ["tagger", "parser", "ner"] %}
|
||
|
{# Other components defined by the user: we just assume they're factories #}
|
||
|
[components.{{ pipe }}]
|
||
|
factory = "{{ pipe }}"
|
||
|
{% endif %}
|
||
|
{% endfor %}
|
||
|
|
||
|
[training]
|
||
|
vectors = {{ ('"en_vectors_web_lg"' if optimize == "accuracy" and not has_transformer else false)|safe }}
|
||
|
|
||
|
{% if has_transformer -%}
|
||
|
{#- accumulate_gradient = {{ transformer_info["size_factor"] }} #}
|
||
|
accumulate_gradient = 3
|
||
|
{% endif -%}
|
||
|
|
||
|
[training.optimizer]
|
||
|
@optimizers = "Adam.v1"
|
||
|
|
||
|
[training.optimizer.learn_rate]
|
||
|
@schedules = "warmup_linear.v1"
|
||
|
warmup_steps = 250
|
||
|
total_steps = 20000
|
||
|
initial_rate = 5e-5
|
||
|
|
||
|
[training.train_corpus]
|
||
|
@readers = "spacy.Corpus.v1"
|
||
|
path = ${paths:train}
|
||
|
max_length = {{ 500 if hardware == "gpu" else 0 }}
|
||
|
|
||
|
[training.dev_corpus]
|
||
|
@readers = "spacy.Corpus.v1"
|
||
|
path = ${paths:dev}
|
||
|
max_length = 0
|
||
|
|
||
|
{% if has_transformer %}
|
||
|
[training.batcher]
|
||
|
@batchers = "batch_by_padded.v1"
|
||
|
discard_oversize = true
|
||
|
size = 2000
|
||
|
buffer = 256
|
||
|
{%- else %}
|
||
|
[training.batcher]
|
||
|
@batchers = "batch_by_words.v1"
|
||
|
discard_oversize = false
|
||
|
tolerance = 0.2
|
||
|
|
||
|
[training.batcher.size]
|
||
|
@schedules = "compounding.v1"
|
||
|
start = 100
|
||
|
stop = 1000
|
||
|
compound = 1.001
|
||
|
{% endif %}
|
||
|
|
||
|
[training.score_weights]
|
||
|
{%- if "tagger" in components %}
|
||
|
tag_acc = {{ (1.0 / components|length)|round(2) }}
|
||
|
{%- endif -%}
|
||
|
{%- if "parser" in components %}
|
||
|
dep_uas = 0.0
|
||
|
dep_las = {{ (1.0 / components|length)|round(2) }}
|
||
|
sents_f = 0.0
|
||
|
{%- endif %}
|
||
|
{%- if "ner" in components %}
|
||
|
ents_f = {{ (1.0 / components|length)|round(2) }}
|
||
|
ents_p = 0.0
|
||
|
ents_r = 0.0
|
||
|
{%- endif -%}
|