mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 04:08:09 +03:00
56 lines
1.6 KiB
Python
56 lines
1.6 KiB
Python
|
# coding: utf8
|
||
|
from __future__ import unicode_literals
|
||
|
|
||
|
from ...symbols import NOUN, PROPN, PRON, VERB
|
||
|
|
||
|
# XXX this can probably be pruned a bit
|
||
|
labels = [
|
||
|
"nsubj",
|
||
|
"nmod",
|
||
|
"dobj",
|
||
|
"nsubjpass",
|
||
|
"pcomp",
|
||
|
"pobj",
|
||
|
"obj",
|
||
|
"obl",
|
||
|
"dative",
|
||
|
"appos",
|
||
|
"attr",
|
||
|
"ROOT",
|
||
|
]
|
||
|
|
||
|
def noun_chunks(obj):
|
||
|
"""
|
||
|
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
|
||
|
"""
|
||
|
|
||
|
doc = obj.doc # Ensure works on both Doc and Span.
|
||
|
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||
|
conj = doc.vocab.strings.add("conj")
|
||
|
np_label = doc.vocab.strings.add("NP")
|
||
|
seen = set()
|
||
|
for i, word in enumerate(obj):
|
||
|
if word.pos not in (NOUN, PROPN, PRON):
|
||
|
continue
|
||
|
# Prevent nested chunks from being produced
|
||
|
if word.i in seen:
|
||
|
continue
|
||
|
if word.dep in np_deps:
|
||
|
unseen = [w.i for w in word.subtree if w.i not in seen]
|
||
|
if not unseen:
|
||
|
continue
|
||
|
|
||
|
# this takes care of particles etc.
|
||
|
seen.update(j.i for j in word.subtree)
|
||
|
# This avoids duplicating embedded clauses
|
||
|
seen.update(range(word.i + 1))
|
||
|
|
||
|
# if the head of this is a verb, mark that and rights seen
|
||
|
# Don't do the subtree as that can hide other phrases
|
||
|
if word.head.pos == VERB:
|
||
|
seen.add(word.head.i)
|
||
|
seen.update(w.i for w in word.head.rights)
|
||
|
yield unseen[0], word.i + 1, np_label
|
||
|
|
||
|
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}
|