mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
67 lines
3.1 KiB
Plaintext
67 lines
3.1 KiB
Plaintext
|
include ../../_includes/_mixins
|
||
|
|
||
|
p By default spaCy loads a #[code data/vocab/vec.bin] file, where the #[em data] directory is within the #[code spacy.en] module directory. This file can be replaced, to customize the word vectors that spaCy loads. You can also replace the word vectors at run-time.
|
||
|
|
||
|
+h3("replacing-vec-bin") Replacing vec.bin
|
||
|
|
||
|
p The function #[code spacy.vocab.write_binary_vectors] creates a word vectors file in spaCy's binary data format. It expects a #[code bz2] file in the following format:
|
||
|
|
||
|
+code.
|
||
|
word_key1 0.92 0.45 -0.9 0.0
|
||
|
word_key2 0.3 0.1 0.6 0.3
|
||
|
...
|
||
|
|
||
|
p That is, each line is a single entry. Each entry consists of a key string, followed by a sequence of floats. Each entry should have the same number of floats.
|
||
|
|
||
|
p The following example script will replace the #[code vec.bin] file with vectors read from a #[code bz2] archive:
|
||
|
|
||
|
+code.
|
||
|
from spacy.vocab import write_binary_vectors
|
||
|
import spacy.en
|
||
|
from os import path
|
||
|
|
||
|
def main(bz2_loc, bin_loc=None):
|
||
|
if bin_loc is None:
|
||
|
bin_loc = path.join(path.dirname(spacy.en.__file__), 'data', 'vocab', 'vec.bin')
|
||
|
write_binary_vectors(bz2_loc, bin_loc)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
plac.call(main)
|
||
|
|
||
|
+h3("replace-vectors-archive") Replace the Vectors at Run-Time, From an Archive
|
||
|
|
||
|
p Since v0.93, instances of #[code Vocab] allow new vectors to be loaded from #[code bz2] archive files. This allows vectors to be loaded as follows:
|
||
|
|
||
|
+code.
|
||
|
>>> from spacy.en import English
|
||
|
>>> nlp = English()
|
||
|
>>> n_dimensions = nlp.vocab.load_vectors('glove.840B.300d.txt.bz2')
|
||
|
>>> n_dimensions
|
||
|
300
|
||
|
|
||
|
+h3("replace-vectors-per-word") Replace Vectors at Run-Time, Per Word
|
||
|
|
||
|
p Since v0.93, you can assign to the #[code .vector] attribute of #[code Lexeme] instances. Tokens of that lexical type will then inherit the updated vector. For instance:
|
||
|
|
||
|
+code.
|
||
|
>>> from spacy.en import English
|
||
|
>>> nlp = English()
|
||
|
>>> apples, oranges = nlp(u'apples oranges')
|
||
|
<type 'spacy.tokens.token.Token'>
|
||
|
>>> apples_lexeme = nlp.vocab[u'apples']
|
||
|
>>> type(apples), type(apples_lexeme)
|
||
|
(<type 'spacy.tokens.token.Token'>, <type 'spacy.lexeme.Lexeme'>)
|
||
|
>>> sum(apples.vector)
|
||
|
0.56299778164247982
|
||
|
>>> apples_lexeme.vector *= 2
|
||
|
>>> sum(apples.vector)
|
||
|
1.1259955632849596
|
||
|
|
||
|
p All tokens which have the #[code orth] attribute #[em apples] will inherit the updated vector.
|
||
|
|
||
|
p Note that the updated vectors won't persist after exit, unless you persist them yourself, and then replace the #[code vec.bin] file as described above.
|
||
|
|
||
|
p A popular source of word vectors are the #[a(href="http://nlp.stanford.edu/projects/glove/" target="_blank") GloVe word vectors], particularly those calculated off the #[a(href="https://commoncrawl.org/" target="_blank") Common Crawl]. Note that the provided vector file has a few entries which are not valid UTF8 strings. These should be filtered out.
|
||
|
|
||
|
p Future versions of spaCy will allow you to provide a file-like object, instead of a location of a #[bz2] file.
|