mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
37 lines
1.1 KiB
Python
37 lines
1.1 KiB
Python
|
from __future__ import unicode_literals
|
||
|
import spacy
|
||
|
from spacy.attrs import ORTH
|
||
|
|
||
|
|
||
|
def merge_phrases(matcher, doc, i, matches):
|
||
|
'''
|
||
|
Merge a phrase. We have to be careful here because we'll change the token indices.
|
||
|
To avoid problems, merge all the phrases once we're called on the last match.
|
||
|
'''
|
||
|
if i != len(matches)-1:
|
||
|
return None
|
||
|
# Get Span objects
|
||
|
spans = [(ent_id, label, doc[start : end]) for ent_id, label, start, end in matches]
|
||
|
for ent_id, label, span in spans:
|
||
|
span.merge('NNP' if label else span.root.tag_, span.text, doc.vocab.strings[label])
|
||
|
|
||
|
def test_entity_ID_assignment():
|
||
|
nlp = spacy.en.English()
|
||
|
text = u"""The golf club is broken"""
|
||
|
doc = nlp(text)
|
||
|
|
||
|
golf_pattern = [
|
||
|
{ ORTH: "golf"},
|
||
|
{ ORTH: "club"}
|
||
|
]
|
||
|
|
||
|
matcher = spacy.matcher.Matcher(nlp.vocab)
|
||
|
matcher.add_entity('Sport_Equipment', on_match = merge_phrases)
|
||
|
matcher.add_pattern("Sport_Equipment", golf_pattern, label = 'Sport_Equipment')
|
||
|
|
||
|
match = matcher(doc)
|
||
|
entities = list(doc.ents)
|
||
|
|
||
|
assert entities != [] #assertion 1
|
||
|
assert entities[0].label != 0 #assertion 2
|