spaCy/website/usage/_v2/_features.jade

238 lines
10 KiB
Plaintext
Raw Normal View History

//- 💫 DOCS > USAGE > WHAT'S NEW IN V2.0 > NEW FEATURES
p
| This section contains an overview of the most important
| #[strong new features and improvements]. The #[+a("/api") API docs]
| include additional deprecation notes. New methods and functions that
| were introduced in this version are marked with a
| #[span.u-text-tag.u-text-tag--spaced v2.0] tag.
+h(3, "features-models") Convolutional neural network models
+aside-code("Example", "bash")
for model in ["en", "de", "fr", "es", "pt", "it"]
| spacy download #{model} # default #{LANGUAGES[model]} model!{'\n'}
| spacy download xx_ent_wiki_sm # multi-language NER
p
| spaCy v2.0 features new neural models for tagging,
| parsing and entity recognition. The models have
| been designed and implemented from scratch specifically for spaCy, to
| give you an unmatched balance of speed, size and accuracy. The new
| models are #[strong 10× smaller], #[strong 20% more accurate],
| and #[strong just as fast] as the previous generation.
| #[strong GPU usage] is now supported via
| #[+a("http://chainer.org") Chainer]'s CuPy module.
+infobox
| #[+label-inline Usage:] #[+a("/models") Models directory],
| #[+a("/models/comparison") Models comparison],
| #[+a("/usage/#gpu") Using spaCy with GPU]
+h(3, "features-pipelines") Improved processing pipelines
+aside-code("Example").
# Set custom attributes
Doc.set_extension('my_attr', default=False)
Token.set_extension('my_attr', getter=my_token_getter)
assert doc._.my_attr, token._.my_attr
# Add components to the pipeline
my_component = lambda doc: doc
nlp.add_pipe(my_component)
p
| It's now much easier to #[strong customise the pipeline] with your own
| components: functions that receive a #[code Doc] object, modify and
| return it. Extensions let you write any
| #[strong attributes, properties and methods] to the #[code Doc],
| #[code Token] and #[code Span]. You can add data, implement new
| features, integrate other libraries with spaCy or plug in your own
| machine learning models.
+image
include ../../assets/img/pipeline.svg
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]],
| #[+api("doc#set_extension") #[code Doc.set_extension]],
| #[+api("span#set_extension") #[code Span.set_extension]],
| #[+api("token#set_extension") #[code Token.set_extension]]
| #[+label-inline Usage:]
| #[+a("/usage/processing-pipelines") Processing pipelines]
| #[+label-inline Code:]
| #[+src("/usage/examples#section-pipeline") Pipeline examples]
+h(3, "features-text-classification") Text classification
+aside-code("Example").
textcat = nlp.create_pipe('textcat')
nlp.add_pipe(textcat, last=True)
optimizer = nlp.begin_training()
for itn in range(100):
for doc, gold in train_data:
nlp.update([doc], [gold], sgd=optimizer)
doc = nlp(u'This is a text.')
print(doc.cats)
p
| spaCy v2.0 lets you add text categorization models to spaCy pipelines.
| The model supports classification with multiple, non-mutually
| exclusive labels so multiple labels can apply at once. You can
| change the model architecture rather easily, but by default, the
| #[code TextCategorizer] class uses a convolutional neural network to
| assign position-sensitive vectors to each word in the document.
+infobox
| #[+label-inline API:] #[+api("textcategorizer") #[code TextCategorizer]],
| #[+api("doc#attributes") #[code Doc.cats]],
| #[+api("goldparse#attributes") #[code GoldParse.cats]]#[br]
| #[+label-inline Usage:] #[+a("/usage/text-classification") Text classification]
+h(3, "features-hash-ids") Hash values instead of integer IDs
+aside-code("Example").
doc = nlp(u'I love coffee')
assert doc.vocab.strings[u'coffee'] == 3197928453018144401
assert doc.vocab.strings[3197928453018144401] == u'coffee'
beer_hash = doc.vocab.strings.add(u'beer')
assert doc.vocab.strings[u'beer'] == beer_hash
assert doc.vocab.strings[beer_hash] == u'beer'
p
| The #[+api("stringstore") #[code StringStore]] now resolves all strings
| to hash values instead of integer IDs. This means that the string-to-int
| mapping #[strong no longer depends on the vocabulary state], making a lot
| of workflows much simpler, especially during training. Unlike integer IDs
| in spaCy v1.x, hash values will #[strong always match] even across
| models. Strings can now be added explicitly using the new
| #[+api("stringstore#add") #[code Stringstore.add]] method. A token's hash
| is available via #[code token.orth].
+infobox
| #[+label-inline API:] #[+api("stringstore") #[code StringStore]]
| #[+label-inline Usage:] #[+a("/usage/spacy-101#vocab") Vocab, hashes and lexemes 101]
+h(3, "features-vectors") Improved word vectors support
+aside-code("Example").
for word, vector in vector_data:
nlp.vocab.set_vector(word, vector)
nlp.vocab.vectors.from_glove('/path/to/vectors')
# keep 10000 unique vectors and remap the rest
nlp.vocab.prune_vectors(10000)
nlp.to_disk('/model')
p
| The new #[+api("vectors") #[code Vectors]] class helps the
| #[code Vocab] manage the vectors assigned to strings, and lets you
| assign vectors individually, or
| #[+a("/usage/vectors-similarity#custom-loading-glove") load in GloVe vectors]
| from a directory. To help you strike a good balance between coverage
| and memory usage, the #[code Vectors] class lets you map
| #[strong multiple keys] to the #[strong same row] of the table. If
| you're using the #[+api("cli#vocab") #[code spacy vocab]] command to
| create a vocabulary, pruning the vectors will be taken care of
| automatically. Otherwise, you can use the new
| #[+api("vocab#prune_vectors") #[code Vocab.prune_vectors]].
+infobox
| #[+label-inline API:] #[+api("vectors") #[code Vectors]],
| #[+api("vocab") #[code Vocab]]
| #[+label-inline Usage:] #[+a("/usage/vectors-similarity") Word vectors and semantic similarity]
+h(3, "features-serializer") Saving, loading and serialization
+aside-code("Example").
nlp = spacy.load('en') # shortcut link
nlp = spacy.load('en_core_web_sm') # package
nlp = spacy.load('/path/to/en') # unicode path
nlp = spacy.load(Path('/path/to/en')) # pathlib Path
nlp.to_disk('/path/to/nlp')
nlp = English().from_disk('/path/to/nlp')
p
| spay's serialization API has been made consistent across classes and
| objects. All container classes, i.e. #[code Language], #[code Doc],
| #[code Vocab] and #[code StringStore] now have a #[code to_bytes()],
| #[code from_bytes()], #[code to_disk()] and #[code from_disk()] method
| that supports the Pickle protocol.
p
| The improved #[code spacy.load] makes loading models easier and more
| transparent. You can load a model by supplying its
| #[+a("/usage/models#usage") shortcut link], the name of an installed
| #[+a("/usage/saving-loading#generating") model package] or a path.
| The #[code Language] class to initialise will be determined based on the
| model's settings. For a blank language, you can import the class directly,
| e.g. #[code from spacy.lang.en import English].
+infobox
| #[+label-inline API:] #[+api("spacy#load") #[code spacy.load]]
| #[+label-inline Usage:] #[+a("/usage/saving-loading") Saving and loading]
+h(3, "features-displacy") displaCy visualizer with Jupyter support
+aside-code("Example").
from spacy import displacy
doc = nlp(u'This is a sentence about Facebook.')
displacy.serve(doc, style='dep') # run the web server
html = displacy.render(doc, style='ent') # generate HTML
p
| Our popular dependency and named entity visualizers are now an official
| part of the spaCy library. displaCy can run a simple web server, or
| generate raw HTML markup or SVG files to be exported. You can pass in one
| or more docs, and customise the style. displaCy also auto-detects whether
| you're running #[+a("https://jupyter.org") Jupyter] and will render the
| visualizations in your notebook.
+infobox
| #[+label-inline API:] #[+api("displacy") #[code displacy]]
| #[+label-inline Usage:] #[+a("/usage/visualizers") Visualizing spaCy]
+h(3, "features-language") Improved language data and lazy loading
p
| Language-specfic data now lives in its own submodule, #[code spacy.lang].
| Languages are lazy-loaded, i.e. only loaded when you import a
| #[code Language] class, or load a model that initialises one. This allows
| languages to contain more custom data, e.g. lemmatizer lookup tables, or
| complex regular expressions. The language data has also been tidied up
| and simplified. spaCy now also supports simple lookup-based
| lemmatization and #[strong #{LANG_COUNT} languages] in total!
+infobox
| #[+label-inline API:] #[+api("language") #[code Language]]
| #[+label-inline Code:] #[+src(gh("spaCy", "spacy/lang")) #[code spacy/lang]]
| #[+label-inline Usage:] #[+a("/usage/adding-languages") Adding languages]
+h(3, "features-matcher") Revised matcher API and phrase matcher
+aside-code("Example").
from spacy.matcher import Matcher, PhraseMatcher
matcher = Matcher(nlp.vocab)
matcher.add('HEARTS', None, [{'ORTH': '❤️', 'OP': '+'}])
phrasematcher = PhraseMatcher(nlp.vocab)
phrasematcher.add('OBAMA', None, nlp(u"Barack Obama"))
p
| Patterns can now be added to the matcher by calling
| #[+api("matcher-add") #[code matcher.add()]] with a match ID, an optional
| callback function to be invoked on each match, and one or more patterns.
| This allows you to write powerful, pattern-specific logic using only one
| matcher. For example, you might only want to merge some entity types,
| and set custom flags for other matched patterns. The new
| #[+api("phrasematcher") #[code PhraseMatcher]] lets you efficiently
| match very large terminology lists using #[code Doc] objects as match
| patterns.
+infobox
| #[+label-inline API:] #[+api("matcher") #[code Matcher]],
| #[+api("phrasematcher") #[code PhraseMatcher]]
| #[+label-inline Usage:] #[+a("/usage/rule-based-matching") Rule-based matching]