2021-01-07 08:33:00 +03:00
|
|
|
import pytest
|
2021-01-14 12:49:30 +03:00
|
|
|
from spacy.tokens import Doc
|
2021-01-07 08:33:00 +03:00
|
|
|
|
|
|
|
|
|
|
|
def test_noun_chunks_is_parsed(da_tokenizer):
|
|
|
|
"""Test that noun_chunks raises Value Error for 'da' language if Doc is not parsed.
|
|
|
|
To check this test, we're constructing a Doc
|
|
|
|
with a new Vocab here and forcing is_parsed to 'False'
|
|
|
|
to make sure the noun chunks don't run.
|
|
|
|
"""
|
|
|
|
doc = da_tokenizer("Det er en sætning")
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
list(doc.noun_chunks)
|
|
|
|
|
|
|
|
|
|
|
|
DA_NP_TEST_EXAMPLES = [
|
|
|
|
(
|
|
|
|
"Hun elsker at plukker frugt.",
|
2021-01-14 12:49:30 +03:00
|
|
|
["PRON", "VERB", "PART", "VERB", "NOUN", "PUNCT"],
|
|
|
|
["nsubj", "ROOT", "mark", "obj", "obj", "punct"],
|
2021-01-07 08:33:00 +03:00
|
|
|
[1, 0, 1, -2, -1, -4],
|
|
|
|
["Hun", "frugt"],
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Påfugle er de smukkeste fugle.",
|
2021-01-14 12:49:30 +03:00
|
|
|
["NOUN", "AUX", "DET", "ADJ", "NOUN", "PUNCT"],
|
|
|
|
["nsubj", "cop", "det", "amod", "ROOT", "punct"],
|
2021-01-07 08:33:00 +03:00
|
|
|
[4, 3, 2, 1, 0, -1],
|
|
|
|
["Påfugle", "de smukkeste fugle"],
|
|
|
|
),
|
|
|
|
(
|
|
|
|
"Rikke og Jacob Jensen glæder sig til en hyggelig skovtur",
|
2021-01-14 12:49:30 +03:00
|
|
|
[
|
|
|
|
"PROPN",
|
|
|
|
"CCONJ",
|
|
|
|
"PROPN",
|
|
|
|
"PROPN",
|
|
|
|
"VERB",
|
|
|
|
"PRON",
|
|
|
|
"ADP",
|
|
|
|
"DET",
|
|
|
|
"ADJ",
|
|
|
|
"NOUN",
|
|
|
|
],
|
|
|
|
["nsubj", "cc", "conj", "flat", "ROOT", "obj", "case", "det", "amod", "obl"],
|
2021-01-07 08:33:00 +03:00
|
|
|
[4, 1, -2, -1, 0, -1, 3, 2, 1, -5],
|
|
|
|
["Rikke", "Jacob Jensen", "sig", "en hyggelig skovtur"],
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"text,pos,deps,heads,expected_noun_chunks", DA_NP_TEST_EXAMPLES
|
|
|
|
)
|
|
|
|
def test_da_noun_chunks(da_tokenizer, text, pos, deps, heads, expected_noun_chunks):
|
|
|
|
tokens = da_tokenizer(text)
|
|
|
|
|
|
|
|
assert len(heads) == len(pos)
|
2021-01-14 12:49:30 +03:00
|
|
|
doc = Doc(
|
|
|
|
tokens.vocab,
|
|
|
|
words=[t.text for t in tokens],
|
|
|
|
heads=[head + i for i, head in enumerate(heads)],
|
|
|
|
deps=deps,
|
|
|
|
pos=pos,
|
2021-01-07 08:33:00 +03:00
|
|
|
)
|
|
|
|
|
|
|
|
noun_chunks = list(doc.noun_chunks)
|
|
|
|
assert len(noun_chunks) == len(expected_noun_chunks)
|
|
|
|
for i, np in enumerate(noun_chunks):
|
|
|
|
assert np.text == expected_noun_chunks[i]
|