mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Add Arabic language (#2314)
* added support for Arabic lang * added Arabic language support * updated conftest
This commit is contained in:
parent
0e08e49e87
commit
00417794d3
106
.github/contributors/tzano.md
vendored
Normal file
106
.github/contributors/tzano.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Tahar Zanouda |
|
||||
| Company name (if applicable) | |
|
||||
| Title or role (if applicable) | |
|
||||
| Date | 09-05-2018 |
|
||||
| GitHub username | tzano |
|
||||
| Website (optional) | |
|
31
spacy/lang/ar/__init__.py
Normal file
31
spacy/lang/ar/__init__.py
Normal file
|
@ -0,0 +1,31 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from .stop_words import STOP_WORDS
|
||||
from .lex_attrs import LEX_ATTRS
|
||||
from .punctuation import TOKENIZER_SUFFIXES
|
||||
|
||||
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
|
||||
from ..tokenizer_exceptions import BASE_EXCEPTIONS
|
||||
from ..norm_exceptions import BASE_NORMS
|
||||
from ...language import Language
|
||||
from ...attrs import LANG, NORM
|
||||
from ...util import update_exc, add_lookups
|
||||
|
||||
|
||||
class ArabicDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters.update(LEX_ATTRS)
|
||||
lex_attr_getters[LANG] = lambda text: 'ar'
|
||||
lex_attr_getters[NORM] = add_lookups(Language.Defaults.lex_attr_getters[NORM], BASE_NORMS)
|
||||
tokenizer_exceptions = update_exc(BASE_EXCEPTIONS, TOKENIZER_EXCEPTIONS)
|
||||
stop_words = STOP_WORDS
|
||||
suffixes = TOKENIZER_SUFFIXES
|
||||
|
||||
|
||||
class Arabic(Language):
|
||||
lang = 'ar'
|
||||
Defaults = ArabicDefaults
|
||||
|
||||
|
||||
__all__ = ['Arabic']
|
20
spacy/lang/ar/examples.py
Normal file
20
spacy/lang/ar/examples.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
"""
|
||||
Example sentences to test spaCy and its language models.
|
||||
|
||||
>>> from spacy.lang.ar.examples import sentences
|
||||
>>> docs = nlp.pipe(sentences)
|
||||
"""
|
||||
|
||||
sentences = [
|
||||
"نال الكاتب خالد توفيق جائزة الرواية العربية في معرض الشارقة الدولي للكتاب",
|
||||
"أين تقع دمشق ؟"
|
||||
"كيف حالك ؟",
|
||||
"هل يمكن ان نلتقي على الساعة الثانية عشرة ظهرا ؟",
|
||||
"ماهي أبرز التطورات السياسية، الأمنية والاجتماعية في العالم ؟",
|
||||
"هل بالإمكان أن نلتقي غدا؟",
|
||||
"هناك نحو 382 مليون شخص مصاب بداء السكَّري في العالم",
|
||||
"كشفت دراسة حديثة أن الخيل تقرأ تعبيرات الوجه وتستطيع أن تتذكر مشاعر الناس وعواطفهم"
|
||||
]
|
95
spacy/lang/ar/lex_attrs.py
Normal file
95
spacy/lang/ar/lex_attrs.py
Normal file
|
@ -0,0 +1,95 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
from ...attrs import LIKE_NUM
|
||||
|
||||
_num_words = set("""
|
||||
صفر
|
||||
واحد
|
||||
إثنان
|
||||
اثنان
|
||||
ثلاثة
|
||||
ثلاثه
|
||||
أربعة
|
||||
أربعه
|
||||
خمسة
|
||||
خمسه
|
||||
ستة
|
||||
سته
|
||||
سبعة
|
||||
سبعه
|
||||
ثمانية
|
||||
ثمانيه
|
||||
تسعة
|
||||
تسعه
|
||||
ﻋﺸﺮﺓ
|
||||
ﻋﺸﺮه
|
||||
عشرون
|
||||
عشرين
|
||||
ثلاثون
|
||||
ثلاثين
|
||||
اربعون
|
||||
اربعين
|
||||
أربعون
|
||||
أربعين
|
||||
خمسون
|
||||
خمسين
|
||||
ستون
|
||||
ستين
|
||||
سبعون
|
||||
سبعين
|
||||
ثمانون
|
||||
ثمانين
|
||||
تسعون
|
||||
تسعين
|
||||
مائتين
|
||||
مائتان
|
||||
ثلاثمائة
|
||||
خمسمائة
|
||||
سبعمائة
|
||||
الف
|
||||
آلاف
|
||||
ملايين
|
||||
مليون
|
||||
مليار
|
||||
مليارات
|
||||
""".split())
|
||||
|
||||
_ordinal_words = set("""
|
||||
اول
|
||||
أول
|
||||
حاد
|
||||
واحد
|
||||
ثان
|
||||
ثاني
|
||||
ثالث
|
||||
رابع
|
||||
خامس
|
||||
سادس
|
||||
سابع
|
||||
ثامن
|
||||
تاسع
|
||||
عاشر
|
||||
""".split())
|
||||
|
||||
|
||||
def like_num(text):
|
||||
"""
|
||||
check if text resembles a number
|
||||
"""
|
||||
text = text.replace(',', '').replace('.', '')
|
||||
if text.isdigit():
|
||||
return True
|
||||
if text.count('/') == 1:
|
||||
num, denom = text.split('/')
|
||||
if num.isdigit() and denom.isdigit():
|
||||
return True
|
||||
if text in _num_words:
|
||||
return True
|
||||
if text in _ordinal_words:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
LEX_ATTRS = {
|
||||
LIKE_NUM: like_num
|
||||
}
|
15
spacy/lang/ar/punctuation.py
Normal file
15
spacy/lang/ar/punctuation.py
Normal file
|
@ -0,0 +1,15 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..punctuation import TOKENIZER_INFIXES
|
||||
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, CURRENCY
|
||||
from ..char_classes import QUOTES, UNITS, ALPHA, ALPHA_LOWER, ALPHA_UPPER
|
||||
|
||||
_suffixes = (LIST_PUNCT + LIST_ELLIPSES + LIST_QUOTES +
|
||||
[r'(?<=[0-9])\+',
|
||||
# Arabic is written from Right-To-Left
|
||||
r'(?<=[0-9])(?:{})'.format(CURRENCY),
|
||||
r'(?<=[0-9])(?:{})'.format(UNITS),
|
||||
r'(?<=[{au}][{au}])\.'.format(au=ALPHA_UPPER)])
|
||||
|
||||
TOKENIZER_SUFFIXES = _suffixes
|
229
spacy/lang/ar/stop_words.py
Normal file
229
spacy/lang/ar/stop_words.py
Normal file
|
@ -0,0 +1,229 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
STOP_WORDS = set("""
|
||||
من
|
||||
نحو
|
||||
لعل
|
||||
بما
|
||||
بين
|
||||
وبين
|
||||
ايضا
|
||||
وبينما
|
||||
تحت
|
||||
مثلا
|
||||
لدي
|
||||
عنه
|
||||
مع
|
||||
هي
|
||||
وهذا
|
||||
واذا
|
||||
هذان
|
||||
انه
|
||||
بينما
|
||||
أمسى
|
||||
وسوف
|
||||
ولم
|
||||
لذلك
|
||||
إلى
|
||||
منه
|
||||
منها
|
||||
كما
|
||||
ظل
|
||||
هنا
|
||||
به
|
||||
كذلك
|
||||
اما
|
||||
هما
|
||||
بعد
|
||||
بينهم
|
||||
التي
|
||||
أبو
|
||||
اذا
|
||||
بدلا
|
||||
لها
|
||||
أمام
|
||||
يلي
|
||||
حين
|
||||
ضد
|
||||
الذي
|
||||
قد
|
||||
صار
|
||||
إذا
|
||||
مابرح
|
||||
قبل
|
||||
كل
|
||||
وليست
|
||||
الذين
|
||||
لهذا
|
||||
وثي
|
||||
انهم
|
||||
باللتي
|
||||
مافتئ
|
||||
ولا
|
||||
بهذه
|
||||
بحيث
|
||||
كيف
|
||||
وله
|
||||
علي
|
||||
بات
|
||||
لاسيما
|
||||
حتى
|
||||
وقد
|
||||
و
|
||||
أما
|
||||
فيها
|
||||
بهذا
|
||||
لذا
|
||||
حيث
|
||||
لقد
|
||||
إن
|
||||
فإن
|
||||
اول
|
||||
ليت
|
||||
فاللتي
|
||||
ولقد
|
||||
لسوف
|
||||
هذه
|
||||
ولماذا
|
||||
معه
|
||||
الحالي
|
||||
بإن
|
||||
حول
|
||||
في
|
||||
عليه
|
||||
مايزال
|
||||
ولعل
|
||||
أنه
|
||||
أضحى
|
||||
اي
|
||||
ستكون
|
||||
لن
|
||||
أن
|
||||
ضمن
|
||||
وعلى
|
||||
امسى
|
||||
الي
|
||||
ذات
|
||||
ولايزال
|
||||
ذلك
|
||||
فقد
|
||||
هم
|
||||
أي
|
||||
عند
|
||||
ابن
|
||||
أو
|
||||
فهو
|
||||
فانه
|
||||
سوف
|
||||
ما
|
||||
آل
|
||||
كلا
|
||||
عنها
|
||||
وكذلك
|
||||
ليست
|
||||
لم
|
||||
وأن
|
||||
ماذا
|
||||
لو
|
||||
وهل
|
||||
اللتي
|
||||
ولذا
|
||||
يمكن
|
||||
فيه
|
||||
الا
|
||||
عليها
|
||||
وبينهم
|
||||
يوم
|
||||
وبما
|
||||
لما
|
||||
فكان
|
||||
اضحى
|
||||
اصبح
|
||||
لهم
|
||||
بها
|
||||
او
|
||||
الذى
|
||||
الى
|
||||
إلي
|
||||
قال
|
||||
والتي
|
||||
لازال
|
||||
أصبح
|
||||
ولهذا
|
||||
مثل
|
||||
وكانت
|
||||
لكنه
|
||||
بذلك
|
||||
هذا
|
||||
لماذا
|
||||
قالت
|
||||
فقط
|
||||
لكن
|
||||
مما
|
||||
وكل
|
||||
وان
|
||||
وأبو
|
||||
ومن
|
||||
كان
|
||||
مازال
|
||||
هل
|
||||
بينهن
|
||||
هو
|
||||
وما
|
||||
على
|
||||
وهو
|
||||
لأن
|
||||
واللتي
|
||||
والذي
|
||||
دون
|
||||
عن
|
||||
وايضا
|
||||
هناك
|
||||
بلا
|
||||
جدا
|
||||
ثم
|
||||
منذ
|
||||
اللذين
|
||||
لايزال
|
||||
بعض
|
||||
مساء
|
||||
تكون
|
||||
فلا
|
||||
بيننا
|
||||
لا
|
||||
ولكن
|
||||
إذ
|
||||
وأثناء
|
||||
ليس
|
||||
ومع
|
||||
فيهم
|
||||
ولسوف
|
||||
بل
|
||||
تلك
|
||||
أحد
|
||||
وهي
|
||||
وكان
|
||||
ومنها
|
||||
وفي
|
||||
ماانفك
|
||||
اليوم
|
||||
وماذا
|
||||
هؤلاء
|
||||
وليس
|
||||
له
|
||||
أثناء
|
||||
بد
|
||||
اليه
|
||||
كأن
|
||||
اليها
|
||||
بتلك
|
||||
يكون
|
||||
ولما
|
||||
هن
|
||||
والى
|
||||
كانت
|
||||
وقبل
|
||||
ان
|
||||
لدى
|
||||
""".split())
|
47
spacy/lang/ar/tokenizer_exceptions.py
Normal file
47
spacy/lang/ar/tokenizer_exceptions.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import ORTH, LEMMA, TAG, NORM, PRON_LEMMA
|
||||
import re
|
||||
|
||||
_exc = {}
|
||||
|
||||
# time
|
||||
for exc_data in [
|
||||
{LEMMA: "قبل الميلاد", ORTH: "ق.م"},
|
||||
{LEMMA: "بعد الميلاد", ORTH: "ب. م"},
|
||||
{LEMMA: "ميلادي", ORTH: ".م"},
|
||||
{LEMMA: "هجري", ORTH: ".هـ"},
|
||||
{LEMMA: "توفي", ORTH: ".ت"}]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
# scientific abv.
|
||||
for exc_data in [
|
||||
{LEMMA: "صلى الله عليه وسلم", ORTH: "صلعم"},
|
||||
{LEMMA: "الشارح", ORTH: "الشـ"},
|
||||
{LEMMA: "الظاهر", ORTH: "الظـ"},
|
||||
{LEMMA: "أيضًا", ORTH: "أيضـ"},
|
||||
{LEMMA: "إلى آخره", ORTH: "إلخ"},
|
||||
{LEMMA: "انتهى", ORTH: "اهـ"},
|
||||
{LEMMA: "حدّثنا", ORTH: "ثنا"},
|
||||
{LEMMA: "حدثني", ORTH: "ثنى"},
|
||||
{LEMMA: "أنبأنا", ORTH: "أنا"},
|
||||
{LEMMA: "أخبرنا", ORTH: "نا"},
|
||||
{LEMMA: "مصدر سابق", ORTH: "م. س"},
|
||||
{LEMMA: "مصدر نفسه", ORTH: "م. ن"}]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
# other abv.
|
||||
for exc_data in [
|
||||
{LEMMA: "دكتور", ORTH: "د."},
|
||||
{LEMMA: "أستاذ دكتور", ORTH: "أ.د"},
|
||||
{LEMMA: "أستاذ", ORTH: "أ."},
|
||||
{LEMMA: "بروفيسور", ORTH: "ب."}]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
for exc_data in [
|
||||
{LEMMA: "تلفون", ORTH: "ت."},
|
||||
{LEMMA: "صندوق بريد", ORTH: "ص.ب"}]:
|
||||
_exc[exc_data[ORTH]] = [exc_data]
|
||||
|
||||
TOKENIZER_EXCEPTIONS = _exc
|
|
@ -3,13 +3,11 @@ from __future__ import unicode_literals
|
|||
|
||||
import regex as re
|
||||
|
||||
|
||||
re.DEFAULT_VERSION = re.VERSION1
|
||||
merge_char_classes = lambda classes: '[{}]'.format('||'.join(classes))
|
||||
split_chars = lambda char: list(char.strip().split(' '))
|
||||
merge_chars = lambda char: char.strip().replace(' ', '|')
|
||||
|
||||
|
||||
_bengali = r'[\p{L}&&\p{Bengali}]'
|
||||
_hebrew = r'[\p{L}&&\p{Hebrew}]'
|
||||
_latin_lower = r'[\p{Ll}&&\p{Latin}]'
|
||||
|
@ -27,11 +25,11 @@ ALPHA = merge_char_classes(_upper + _lower + _uncased)
|
|||
ALPHA_LOWER = merge_char_classes(_lower + _uncased)
|
||||
ALPHA_UPPER = merge_char_classes(_upper + _uncased)
|
||||
|
||||
|
||||
_units = ('km km² km³ m m² m³ dm dm² dm³ cm cm² cm³ mm mm² mm³ ha µm nm yd in ft '
|
||||
'kg g mg µg t lb oz m/s km/h kmh mph hPa Pa mbar mb MB kb KB gb GB tb '
|
||||
'TB T G M K % км км² км³ м м² м³ дм дм² дм³ см см² см³ мм мм² мм³ нм '
|
||||
'кг г мг м/с км/ч кПа Па мбар Кб КБ кб Мб МБ мб Гб ГБ гб Тб ТБ тб')
|
||||
'кг г мг м/с км/ч кПа Па мбар Кб КБ кб Мб МБ мб Гб ГБ гб Тб ТБ тб'
|
||||
'كم كم² كم³ م م² م³ سم سم² سم³ مم مم² مم³ كم غرام جرام جم كغ ملغ كوب اكواب')
|
||||
_currency = r'\$ £ € ¥ ฿ US\$ C\$ A\$ ₽ ﷼'
|
||||
|
||||
# These expressions contain various unicode variations, including characters
|
||||
|
@ -45,7 +43,6 @@ _hyphens = '- – — -- --- —— ~'
|
|||
# Details: https://www.compart.com/en/unicode/category/So
|
||||
_other_symbols = r'[\p{So}]'
|
||||
|
||||
|
||||
UNITS = merge_chars(_units)
|
||||
CURRENCY = merge_chars(_currency)
|
||||
QUOTES = merge_chars(_quotes)
|
||||
|
|
|
@ -15,7 +15,9 @@ from .. import util
|
|||
# here if it's using spaCy's tokenizer (not a different library)
|
||||
# TODO: re-implement generic tokenizer tests
|
||||
_languages = ['bn', 'da', 'de', 'en', 'es', 'fi', 'fr', 'ga', 'he', 'hu', 'id',
|
||||
'it', 'nb', 'nl', 'pl', 'pt', 'ru', 'sv', 'tr', 'ar', 'xx']
|
||||
'it', 'nb', 'nl', 'pl', 'pt', 'ro', 'ru', 'sv', 'tr', 'xx']
|
||||
|
||||
_models = {'en': ['en_core_web_sm'],
|
||||
'de': ['de_core_news_md'],
|
||||
'fr': ['fr_core_news_sm'],
|
||||
|
@ -50,8 +52,8 @@ def RU(request):
|
|||
|
||||
#@pytest.fixture(params=_languages)
|
||||
#def tokenizer(request):
|
||||
#lang = util.get_lang_class(request.param)
|
||||
#return lang.Defaults.create_tokenizer()
|
||||
#lang = util.get_lang_class(request.param)
|
||||
#return lang.Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -152,6 +154,9 @@ def th_tokenizer():
|
|||
def tr_tokenizer():
|
||||
return util.get_lang_class('tr').Defaults.create_tokenizer()
|
||||
|
||||
@pytest.fixture
|
||||
def ar_tokenizer():
|
||||
return util.get_lang_class('ar').Defaults.create_tokenizer()
|
||||
|
||||
@pytest.fixture
|
||||
def ru_tokenizer():
|
||||
|
@ -166,7 +171,7 @@ def stringstore():
|
|||
|
||||
@pytest.fixture
|
||||
def en_entityrecognizer():
|
||||
return util.get_lang_class('en').Defaults.create_entity()
|
||||
return util.get_lang_class('en').Defaults.create_entity()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -181,11 +186,11 @@ def text_file_b():
|
|||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption("--models", action="store_true",
|
||||
help="include tests that require full models")
|
||||
help="include tests that require full models")
|
||||
parser.addoption("--vectors", action="store_true",
|
||||
help="include word vectors tests")
|
||||
help="include word vectors tests")
|
||||
parser.addoption("--slow", action="store_true",
|
||||
help="include slow tests")
|
||||
help="include slow tests")
|
||||
|
||||
for lang in _languages + ['all']:
|
||||
parser.addoption("--%s" % lang, action="store_true", help="Use %s models" % lang)
|
||||
|
|
0
spacy/tests/lang/ar/__init__.py
Normal file
0
spacy/tests/lang/ar/__init__.py
Normal file
26
spacy/tests/lang/ar/test_exceptions.py
Normal file
26
spacy/tests/lang/ar/test_exceptions.py
Normal file
|
@ -0,0 +1,26 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.parametrize('text',
|
||||
["ق.م", "إلخ", "ص.ب", "ت."])
|
||||
def test_ar_tokenizer_handles_abbr(ar_tokenizer, text):
|
||||
tokens = ar_tokenizer(text)
|
||||
assert len(tokens) == 1
|
||||
|
||||
|
||||
def test_ar_tokenizer_handles_exc_in_text(ar_tokenizer):
|
||||
text = u"تعود الكتابة الهيروغليفية إلى سنة 3200 ق.م"
|
||||
tokens = ar_tokenizer(text)
|
||||
assert len(tokens) == 7
|
||||
assert tokens[6].text == "ق.م"
|
||||
assert tokens[6].lemma_ == "قبل الميلاد"
|
||||
|
||||
|
||||
def test_ar_tokenizer_handles_exc_in_text(ar_tokenizer):
|
||||
text = u"يبلغ طول مضيق طارق 14كم "
|
||||
tokens = ar_tokenizer(text)
|
||||
print([(tokens[i].text, tokens[i].suffix_) for i in range(len(tokens))])
|
||||
assert len(tokens) == 6
|
13
spacy/tests/lang/ar/test_text.py
Normal file
13
spacy/tests/lang/ar/test_text.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
# coding: utf8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
|
||||
def test_tokenizer_handles_long_text(ar_tokenizer):
|
||||
text = """نجيب محفوظ مؤلف و كاتب روائي عربي، يعد من أهم الأدباء العرب خلال القرن العشرين.
|
||||
ولد نجيب محفوظ في مدينة القاهرة، حيث ترعرع و تلقى تعليمه الجامعي في جامعتها،
|
||||
فتمكن من نيل شهادة في الفلسفة. ألف محفوظ على مدار حياته الكثير من الأعمال الأدبية، و في مقدمتها ثلاثيته الشهيرة.
|
||||
و قد نجح في الحصول على جائزة نوبل للآداب، ليكون بذلك العربي الوحيد الذي فاز بها."""
|
||||
|
||||
tokens = ar_tokenizer(text)
|
||||
assert tokens[3].is_stop == True
|
||||
assert len(tokens) == 77
|
Loading…
Reference in New Issue
Block a user