mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-25 17:36:30 +03:00
Add example of NER multitask objective
This commit is contained in:
parent
203d2ea830
commit
00557c5fdd
85
examples/training/ner_multitask_objective.py
Normal file
85
examples/training/ner_multitask_objective.py
Normal file
|
@ -0,0 +1,85 @@
|
||||||
|
'''This example shows how to add a multi-task objective that is trained
|
||||||
|
alongside the entity recognizer. This is an alternative to adding features
|
||||||
|
to the model.
|
||||||
|
|
||||||
|
The multi-task idea is to train an auxiliary model to predict some attribute,
|
||||||
|
with weights shared between the auxiliary model and the main model. In this
|
||||||
|
example, we're predicting the position of the word in the document.
|
||||||
|
|
||||||
|
The model that predicts the position of the word encourages the convolutional
|
||||||
|
layers to include the position information in their representation. The
|
||||||
|
information is then available to the main model, as a feature.
|
||||||
|
|
||||||
|
The overall idea is that we might know something about what sort of features
|
||||||
|
we'd like the CNN to extract. The multi-task objectives can encourage the
|
||||||
|
extraction of this type of feature. The multi-task objective is only used
|
||||||
|
during training. We discard the auxiliary model before run-time.
|
||||||
|
|
||||||
|
The specific example here is not necessarily a good idea --- but it shows
|
||||||
|
how an arbitrary objective function for some word can be used.
|
||||||
|
|
||||||
|
Developed and tested for spaCy 2.0.6
|
||||||
|
'''
|
||||||
|
import random
|
||||||
|
import plac
|
||||||
|
import spacy
|
||||||
|
import os.path
|
||||||
|
from spacy.gold import read_json_file, GoldParse
|
||||||
|
|
||||||
|
random.seed(0)
|
||||||
|
|
||||||
|
PWD = os.path.dirname(__file__)
|
||||||
|
|
||||||
|
TRAIN_DATA = list(read_json_file(os.path.join(PWD, 'training-data.json')))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_position_label(i, words, tags, heads, labels, ents):
|
||||||
|
'''Return labels indicating the position of the word in the document.
|
||||||
|
'''
|
||||||
|
if len(words) < 20:
|
||||||
|
return 'short-doc'
|
||||||
|
elif i == 0:
|
||||||
|
return 'first-word'
|
||||||
|
elif i < 10:
|
||||||
|
return 'early-word'
|
||||||
|
elif i < 20:
|
||||||
|
return 'mid-word'
|
||||||
|
elif i == len(words)-1:
|
||||||
|
return 'last-word'
|
||||||
|
else:
|
||||||
|
return 'late-word'
|
||||||
|
|
||||||
|
|
||||||
|
def main(n_iter=10):
|
||||||
|
nlp = spacy.blank('en')
|
||||||
|
ner = nlp.create_pipe('ner')
|
||||||
|
ner.add_multitask_objective(get_position_label)
|
||||||
|
nlp.add_pipe(ner)
|
||||||
|
|
||||||
|
print("Create data", len(TRAIN_DATA))
|
||||||
|
optimizer = nlp.begin_training(get_gold_tuples=lambda: TRAIN_DATA)
|
||||||
|
for itn in range(n_iter):
|
||||||
|
random.shuffle(TRAIN_DATA)
|
||||||
|
losses = {}
|
||||||
|
for text, annot_brackets in TRAIN_DATA:
|
||||||
|
annotations, _ = annot_brackets
|
||||||
|
doc = nlp.make_doc(text)
|
||||||
|
gold = GoldParse.from_annot_tuples(doc, annotations[0])
|
||||||
|
nlp.update(
|
||||||
|
[doc], # batch of texts
|
||||||
|
[gold], # batch of annotations
|
||||||
|
drop=0.2, # dropout - make it harder to memorise data
|
||||||
|
sgd=optimizer, # callable to update weights
|
||||||
|
losses=losses)
|
||||||
|
print(losses.get('nn_labeller', 0.0), losses['ner'])
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
for text, _ in TRAIN_DATA:
|
||||||
|
doc = nlp(text)
|
||||||
|
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
|
||||||
|
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
plac.call(main)
|
Loading…
Reference in New Issue
Block a user