Tidy up and auto-format

This commit is contained in:
Ines Montani 2019-08-18 15:09:16 +02:00
parent 89f2b87266
commit 009280fbc5
12 changed files with 126 additions and 104 deletions

View File

@ -674,14 +674,14 @@ def build_nel_encoder(embed_width, hidden_width, ner_types, **cfg):
with Model.define_operators({">>": chain, "**": clone}):
# context encoder
tok2vec = Tok2Vec(
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
)
width=hidden_width,
embed_size=embed_width,
pretrained_vectors=pretrained_vectors,
cnn_maxout_pieces=cnn_maxout_pieces,
subword_features=True,
conv_depth=conv_depth,
bilstm_depth=0,
)
model = (
tok2vec

View File

@ -8,7 +8,7 @@ import sys
import srsly
from wasabi import Printer, MESSAGES
from ..gold import GoldCorpus, read_json_object
from ..gold import GoldCorpus
from ..syntax import nonproj
from ..util import load_model, get_lang_class
@ -95,13 +95,19 @@ def debug_data(
corpus = GoldCorpus(train_path, dev_path)
try:
train_docs = list(corpus.train_docs(nlp))
train_docs_unpreprocessed = list(corpus.train_docs_without_preprocessing(nlp))
train_docs_unpreprocessed = list(
corpus.train_docs_without_preprocessing(nlp)
)
except ValueError as e:
loading_train_error_message = "Training data cannot be loaded: {}".format(str(e))
loading_train_error_message = "Training data cannot be loaded: {}".format(
str(e)
)
try:
dev_docs = list(corpus.dev_docs(nlp))
except ValueError as e:
loading_dev_error_message = "Development data cannot be loaded: {}".format(str(e))
loading_dev_error_message = "Development data cannot be loaded: {}".format(
str(e)
)
if loading_train_error_message or loading_dev_error_message:
if loading_train_error_message:
msg.fail(loading_train_error_message)
@ -158,11 +164,15 @@ def debug_data(
)
if gold_train_data["n_misaligned_words"] > 0:
msg.warn(
"{} misaligned tokens in the training data".format(gold_train_data["n_misaligned_words"])
"{} misaligned tokens in the training data".format(
gold_train_data["n_misaligned_words"]
)
)
if gold_dev_data["n_misaligned_words"] > 0:
msg.warn(
"{} misaligned tokens in the dev data".format(gold_dev_data["n_misaligned_words"])
"{} misaligned tokens in the dev data".format(
gold_dev_data["n_misaligned_words"]
)
)
most_common_words = gold_train_data["words"].most_common(10)
msg.text(
@ -184,7 +194,9 @@ def debug_data(
if "ner" in pipeline:
# Get all unique NER labels present in the data
labels = set(label for label in gold_train_data["ner"] if label not in ("O", "-"))
labels = set(
label for label in gold_train_data["ner"] if label not in ("O", "-")
)
label_counts = gold_train_data["ner"]
model_labels = _get_labels_from_model(nlp, "ner")
new_labels = [l for l in labels if l not in model_labels]
@ -222,7 +234,9 @@ def debug_data(
)
if gold_train_data["ws_ents"]:
msg.fail("{} invalid whitespace entity spans".format(gold_train_data["ws_ents"]))
msg.fail(
"{} invalid whitespace entity spans".format(gold_train_data["ws_ents"])
)
has_ws_ents_error = True
for label in new_labels:
@ -323,33 +337,36 @@ def debug_data(
"Found {} sentence{} with an average length of {:.1f} words.".format(
gold_train_data["n_sents"],
"s" if len(train_docs) > 1 else "",
gold_train_data["n_words"] / gold_train_data["n_sents"]
gold_train_data["n_words"] / gold_train_data["n_sents"],
)
)
# profile labels
labels_train = [label for label in gold_train_data["deps"]]
labels_train_unpreprocessed = [label for label in gold_train_unpreprocessed_data["deps"]]
labels_train_unpreprocessed = [
label for label in gold_train_unpreprocessed_data["deps"]
]
labels_dev = [label for label in gold_dev_data["deps"]]
if gold_train_unpreprocessed_data["n_nonproj"] > 0:
msg.info(
"Found {} nonprojective train sentence{}".format(
gold_train_unpreprocessed_data["n_nonproj"],
"s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else ""
"s" if gold_train_unpreprocessed_data["n_nonproj"] > 1 else "",
)
)
if gold_dev_data["n_nonproj"] > 0:
msg.info(
"Found {} nonprojective dev sentence{}".format(
gold_dev_data["n_nonproj"],
"s" if gold_dev_data["n_nonproj"] > 1 else ""
"s" if gold_dev_data["n_nonproj"] > 1 else "",
)
)
msg.info(
"{} {} in train data".format(
len(labels_train_unpreprocessed), "label" if len(labels_train) == 1 else "labels"
len(labels_train_unpreprocessed),
"label" if len(labels_train) == 1 else "labels",
)
)
msg.info(
@ -373,43 +390,45 @@ def debug_data(
)
has_low_data_warning = True
# rare labels in projectivized train
rare_projectivized_labels = []
for label in gold_train_data["deps"]:
if gold_train_data["deps"][label] <= DEP_LABEL_THRESHOLD and "||" in label:
rare_projectivized_labels.append("{}: {}".format(label, str(gold_train_data["deps"][label])))
rare_projectivized_labels.append(
"{}: {}".format(label, str(gold_train_data["deps"][label]))
)
if len(rare_projectivized_labels) > 0:
msg.warn(
"Low number of examples for {} label{} in the "
"projectivized dependency trees used for training. You may "
"want to projectivize labels such as punct before "
"training in order to improve parser performance.".format(
len(rare_projectivized_labels),
"s" if len(rare_projectivized_labels) > 1 else "")
msg.warn(
"Low number of examples for {} label{} in the "
"projectivized dependency trees used for training. You may "
"want to projectivize labels such as punct before "
"training in order to improve parser performance.".format(
len(rare_projectivized_labels),
"s" if len(rare_projectivized_labels) > 1 else "",
)
msg.warn(
"Projectivized labels with low numbers of examples: "
"{}".format("\n".join(rare_projectivized_labels)),
show=verbose
)
has_low_data_warning = True
)
msg.warn(
"Projectivized labels with low numbers of examples: "
"{}".format("\n".join(rare_projectivized_labels)),
show=verbose,
)
has_low_data_warning = True
# labels only in train
if set(labels_train) - set(labels_dev):
msg.warn(
"The following labels were found only in the train data: "
"{}".format(", ".join(set(labels_train) - set(labels_dev))),
show=verbose
show=verbose,
)
# labels only in dev
if set(labels_dev) - set(labels_train):
msg.warn(
"The following labels were found only in the dev data: " +
", ".join(set(labels_dev) - set(labels_train)),
show=verbose
"The following labels were found only in the dev data: "
+ ", ".join(set(labels_dev) - set(labels_train)),
show=verbose,
)
if has_low_data_warning:
@ -422,8 +441,10 @@ def debug_data(
# multiple root labels
if len(gold_train_unpreprocessed_data["roots"]) > 1:
msg.warn(
"Multiple root labels ({}) ".format(", ".join(gold_train_unpreprocessed_data["roots"])) +
"found in training data. spaCy's parser uses a single root "
"Multiple root labels ({}) ".format(
", ".join(gold_train_unpreprocessed_data["roots"])
)
+ "found in training data. spaCy's parser uses a single root "
"label ROOT so this distinction will not be available."
)
@ -432,14 +453,14 @@ def debug_data(
msg.fail(
"Found {} nonprojective projectivized train sentence{}".format(
gold_train_data["n_nonproj"],
"s" if gold_train_data["n_nonproj"] > 1 else ""
"s" if gold_train_data["n_nonproj"] > 1 else "",
)
)
if gold_train_data["n_cycles"] > 0:
msg.fail(
"Found {} projectivized train sentence{} with cycles".format(
gold_train_data["n_cycles"],
"s" if gold_train_data["n_cycles"] > 1 else ""
"s" if gold_train_data["n_cycles"] > 1 else "",
)
)

View File

@ -114,7 +114,7 @@ def read_attrs_from_deprecated(freqs_loc, clusters_loc):
probs, _ = read_freqs(freqs_loc)
msg.good("Counted frequencies")
else:
probs, _ = ({}, DEFAULT_OOV_PROB)
probs, _ = ({}, DEFAULT_OOV_PROB) # noqa: F841
if clusters_loc:
with msg.loading("Reading clusters..."):
clusters = read_clusters(clusters_loc)

View File

@ -429,6 +429,7 @@ class Errors(object):
E155 = ("The `nlp` object should have access to pre-trained word vectors, cf. "
"https://spacy.io/usage/models#languages.")
@add_codes
class TempErrors(object):
T003 = ("Resizing pre-trained Tagger models is not currently supported.")

View File

@ -1,10 +1,8 @@
# encoding: utf8
from __future__ import unicode_literals, print_function
import re
import sys
from .stop_words import STOP_WORDS
from .tag_map import TAG_MAP
from ...attrs import LANG

View File

@ -8,6 +8,7 @@ from ..tokenizer_exceptions import BASE_EXCEPTIONS
from .stop_words import STOP_WORDS
from .tag_map import TAG_MAP
class ChineseDefaults(Language.Defaults):
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
lex_attr_getters[LANG] = lambda text: "zh"

View File

@ -1,8 +1,8 @@
# coding: utf8
from __future__ import unicode_literals
from ...symbols import POS, PUNCT, SYM, ADJ, CONJ, CCONJ, NUM, DET, ADV, ADP, X, VERB
from ...symbols import NOUN, PROPN, PART, INTJ, SPACE, PRON, AUX
from ...symbols import POS, PUNCT, ADJ, CONJ, CCONJ, NUM, DET, ADV, ADP, X, VERB
from ...symbols import NOUN, PART, INTJ, PRON
# The Chinese part-of-speech tagger uses the OntoNotes 5 version of the Penn Treebank tag set.
# We also map the tags to the simpler Google Universal POS tag set.
@ -43,5 +43,5 @@ TAG_MAP = {
"JJ": {POS: ADJ},
"P": {POS: ADP},
"PN": {POS: PRON},
"PU": {POS: PUNCT}
"PU": {POS: PUNCT},
}

View File

@ -160,14 +160,15 @@ class Scorer(object):
cand_deps.add((gold_i, gold_head, token.dep_.lower()))
if "-" not in [token[-1] for token in gold.orig_annot]:
# Find all NER labels in gold and doc
ent_labels = set([x[0] for x in gold_ents]
+ [k.label_ for k in doc.ents])
ent_labels = set([x[0] for x in gold_ents] + [k.label_ for k in doc.ents])
# Set up all labels for per type scoring and prepare gold per type
gold_per_ents = {ent_label: set() for ent_label in ent_labels}
for ent_label in ent_labels:
if ent_label not in self.ner_per_ents:
self.ner_per_ents[ent_label] = PRFScore()
gold_per_ents[ent_label].update([x for x in gold_ents if x[0] == ent_label])
gold_per_ents[ent_label].update(
[x for x in gold_ents if x[0] == ent_label]
)
# Find all candidate labels, for all and per type
cand_ents = set()
cand_per_ents = {ent_label: set() for ent_label in ent_labels}

View File

@ -1,7 +1,6 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.matcher import PhraseMatcher
from spacy.tokens import Doc

View File

@ -3,12 +3,13 @@ from __future__ import unicode_literals
from ..util import get_doc
def test_issue4104(en_vocab):
"""Test that English lookup lemmatization of spun & dry are correct
expected mapping = {'dry': 'dry', 'spun': 'spin', 'spun-dry': 'spin-dry'}
"""
text = 'dry spun spun-dry'
"""
text = "dry spun spun-dry"
doc = get_doc(en_vocab, [t for t in text.split(" ")])
# using a simple list to preserve order
expected = ['dry', 'spin', 'spin-dry']
expected = ["dry", "spin", "spin-dry"]
assert [token.lemma_ for token in doc] == expected

View File

@ -6,6 +6,7 @@ from spacy.gold import spans_from_biluo_tags, GoldParse
from spacy.tokens import Doc
import pytest
def test_gold_biluo_U(en_vocab):
words = ["I", "flew", "to", "London", "."]
spaces = [True, True, True, False, True]
@ -32,14 +33,18 @@ def test_gold_biluo_BIL(en_vocab):
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
def test_gold_biluo_overlap(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC")]
entities = [
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC"),
]
with pytest.raises(ValueError):
tags = biluo_tags_from_offsets(doc, entities)
biluo_tags_from_offsets(doc, entities)
def test_gold_biluo_misalign(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley."]

View File

@ -7,67 +7,62 @@ from spacy.scorer import Scorer
from .util import get_doc
test_ner_cardinal = [
[
"100 - 200",
{
"entities": [
[0, 3, "CARDINAL"],
[6, 9, "CARDINAL"]
]
}
]
["100 - 200", {"entities": [[0, 3, "CARDINAL"], [6, 9, "CARDINAL"]]}]
]
test_ner_apple = [
[
"Apple is looking at buying U.K. startup for $1 billion",
{
"entities": [
(0, 5, "ORG"),
(27, 31, "GPE"),
(44, 54, "MONEY"),
]
}
{"entities": [(0, 5, "ORG"), (27, 31, "GPE"), (44, 54, "MONEY")]},
]
]
def test_ner_per_type(en_vocab):
# Gold and Doc are identical
scorer = Scorer()
for input_, annot in test_ner_cardinal:
doc = get_doc(en_vocab, words = input_.split(' '), ents = [[0, 1, 'CARDINAL'], [2, 3, 'CARDINAL']])
gold = GoldParse(doc, entities = annot['entities'])
doc = get_doc(
en_vocab,
words=input_.split(" "),
ents=[[0, 1, "CARDINAL"], [2, 3, "CARDINAL"]],
)
gold = GoldParse(doc, entities=annot["entities"])
scorer.score(doc, gold)
results = scorer.scores
assert results['ents_p'] == 100
assert results['ents_f'] == 100
assert results['ents_r'] == 100
assert results['ents_per_type']['CARDINAL']['p'] == 100
assert results['ents_per_type']['CARDINAL']['f'] == 100
assert results['ents_per_type']['CARDINAL']['r'] == 100
assert results["ents_p"] == 100
assert results["ents_f"] == 100
assert results["ents_r"] == 100
assert results["ents_per_type"]["CARDINAL"]["p"] == 100
assert results["ents_per_type"]["CARDINAL"]["f"] == 100
assert results["ents_per_type"]["CARDINAL"]["r"] == 100
# Doc has one missing and one extra entity
# Entity type MONEY is not present in Doc
scorer = Scorer()
for input_, annot in test_ner_apple:
doc = get_doc(en_vocab, words = input_.split(' '), ents = [[0, 1, 'ORG'], [5, 6, 'GPE'], [6, 7, 'ORG']])
gold = GoldParse(doc, entities = annot['entities'])
doc = get_doc(
en_vocab,
words=input_.split(" "),
ents=[[0, 1, "ORG"], [5, 6, "GPE"], [6, 7, "ORG"]],
)
gold = GoldParse(doc, entities=annot["entities"])
scorer.score(doc, gold)
results = scorer.scores
assert results['ents_p'] == approx(66.66666)
assert results['ents_r'] == approx(66.66666)
assert results['ents_f'] == approx(66.66666)
assert 'GPE' in results['ents_per_type']
assert 'MONEY' in results['ents_per_type']
assert 'ORG' in results['ents_per_type']
assert results['ents_per_type']['GPE']['p'] == 100
assert results['ents_per_type']['GPE']['r'] == 100
assert results['ents_per_type']['GPE']['f'] == 100
assert results['ents_per_type']['MONEY']['p'] == 0
assert results['ents_per_type']['MONEY']['r'] == 0
assert results['ents_per_type']['MONEY']['f'] == 0
assert results['ents_per_type']['ORG']['p'] == 50
assert results['ents_per_type']['ORG']['r'] == 100
assert results['ents_per_type']['ORG']['f'] == approx(66.66666)
assert results["ents_p"] == approx(66.66666)
assert results["ents_r"] == approx(66.66666)
assert results["ents_f"] == approx(66.66666)
assert "GPE" in results["ents_per_type"]
assert "MONEY" in results["ents_per_type"]
assert "ORG" in results["ents_per_type"]
assert results["ents_per_type"]["GPE"]["p"] == 100
assert results["ents_per_type"]["GPE"]["r"] == 100
assert results["ents_per_type"]["GPE"]["f"] == 100
assert results["ents_per_type"]["MONEY"]["p"] == 0
assert results["ents_per_type"]["MONEY"]["r"] == 0
assert results["ents_per_type"]["MONEY"]["f"] == 0
assert results["ents_per_type"]["ORG"]["p"] == 50
assert results["ents_per_type"]["ORG"]["r"] == 100
assert results["ents_per_type"]["ORG"]["f"] == approx(66.66666)