mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Update adding languages docs
This commit is contained in:
parent
a4a37a783e
commit
0095d5322b
|
@ -105,35 +105,35 @@ p
|
||||||
|
|
||||||
+table(["File name", "Variables", "Description"])
|
+table(["File name", "Variables", "Description"])
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) stop_words.py]
|
+cell #[+src(gh("spacy-dev-resources", "templates/new_language/stop_words.py")) stop_words.py]
|
||||||
+cell #[code STOP_WORDS] (set)
|
+cell #[code STOP_WORDS] (set)
|
||||||
+cell
|
+cell
|
||||||
| List of most common words. Matching tokens will return #[code True]
|
| List of most common words. Matching tokens will return #[code True]
|
||||||
| for #[code is_stop].
|
| for #[code is_stop].
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) tokenizer_exceptions.py]
|
+cell #[+src(gh("spacy-dev-resources", "templates/new_language/tokenizer_exceptions.py")) tokenizer_exceptions.py]
|
||||||
+cell #[code TOKENIZER_EXCEPTIONS] (dict), #[code TOKEN_MATCH] (regex)
|
+cell #[code TOKENIZER_EXCEPTIONS] (dict), #[code TOKEN_MATCH] (regex)
|
||||||
+cell
|
+cell
|
||||||
| Special-case rules for the tokenizer, for example, contractions
|
| Special-case rules for the tokenizer, for example, contractions
|
||||||
| and abbreviations containing punctuation.
|
| and abbreviations containing punctuation.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) punctuation.py]
|
+cell #[+src(gh("spaCy", "spacy/lang/punctuation.py")) punctuation.py]
|
||||||
+cell
|
+cell
|
||||||
| #[code TOKENIZER_PREFIXES], #[code TOKENIZER_SUFFIXES],
|
| #[code TOKENIZER_PREFIXES], #[code TOKENIZER_SUFFIXES],
|
||||||
| #[code TOKENIZER_INFIXES] (dicts)
|
| #[code TOKENIZER_INFIXES] (dicts)
|
||||||
+cell Regular expressions for splitting tokens, e.g. on punctuation.
|
+cell Regular expressions for splitting tokens, e.g. on punctuation.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) lex_attrs.py]
|
+cell #[+src(gh("spacy-dev-resources", "templates/new_language/lex_attrs.py")) lex_attrs.py]
|
||||||
+cell #[code LEX_ATTRS] (dict)
|
+cell #[code LEX_ATTRS] (dict)
|
||||||
+cell
|
+cell
|
||||||
| Functions for setting lexical attributes on tokens, e.g.
|
| Functions for setting lexical attributes on tokens, e.g.
|
||||||
| #[code is_punct] or #[code like_num].
|
| #[code is_punct] or #[code like_num].
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) tag_map.py]
|
+cell #[+src(gh("spacy-dev-resources", "templates/new_language/tag_map.py")) tag_map.py]
|
||||||
+cell #[code TAG_MAP] (dict)
|
+cell #[code TAG_MAP] (dict)
|
||||||
+cell
|
+cell
|
||||||
| Dictionary mapping strings in your tag set to
|
| Dictionary mapping strings in your tag set to
|
||||||
|
@ -143,10 +143,10 @@ p
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) morph_rules.py]
|
+cell #[+src(gh()) morph_rules.py]
|
||||||
+cell #[code MORPH_RULES] (dict)
|
+cell #[code MORPH_RULES] (dict)
|
||||||
+cell
|
+cell Exception rules for morphological analysis of irregular words.
|
||||||
|
|
||||||
+row
|
+row
|
||||||
+cell #[+src(gh()) lemmatizer.py]
|
+cell #[+src(gh("spacy-dev-resources", "templates/new_language/lemmatizer.py")) lemmatizer.py]
|
||||||
+cell #[code LOOKUP] (dict)
|
+cell #[code LOOKUP] (dict)
|
||||||
+cell
|
+cell
|
||||||
| Lookup-based lemmatization table. If more lemmatizer data is
|
| Lookup-based lemmatization table. If more lemmatizer data is
|
||||||
|
@ -189,7 +189,7 @@ p
|
||||||
| newlines, and added as a multiline string.
|
| newlines, and added as a multiline string.
|
||||||
|
|
||||||
+aside("What does spaCy consider a stop word?")
|
+aside("What does spaCy consider a stop word?")
|
||||||
| There's no particularly principal logic behind what words should be
|
| There's no particularly principled logic behind what words should be
|
||||||
| added to the stop list. Make a list that you think might be useful
|
| added to the stop list. Make a list that you think might be useful
|
||||||
| to people and is likely to be unsurprising. As a rule of thumb, words
|
| to people and is likely to be unsurprising. As a rule of thumb, words
|
||||||
| that are very rare are unlikely to be useful stop words.
|
| that are very rare are unlikely to be useful stop words.
|
||||||
|
@ -363,6 +363,47 @@ p
|
||||||
|
|
||||||
+h(3, "lemmatizer") Lemmatizer
|
+h(3, "lemmatizer") Lemmatizer
|
||||||
|
|
||||||
|
p
|
||||||
|
| As of v2.0, spaCy supports simple lookup-based lemmatization. This is
|
||||||
|
| usually the quickest and easiest way to get started. The data is stored
|
||||||
|
| in a dictionary mapping a string to its lemma. To determine a token's
|
||||||
|
| lemma, spaCy simply looks it up in the table. Here's an example from
|
||||||
|
| the Spanish language data:
|
||||||
|
|
||||||
|
+code("lang/es/lemmatizer.py (excerpt)").
|
||||||
|
LOOKUP = {
|
||||||
|
"aba": "abar",
|
||||||
|
"ababa": "abar",
|
||||||
|
"ababais": "abar",
|
||||||
|
"ababan": "abar",
|
||||||
|
"ababanes": "ababán",
|
||||||
|
"ababas": "abar",
|
||||||
|
"ababoles": "ababol",
|
||||||
|
"ababábites": "ababábite"
|
||||||
|
}
|
||||||
|
|
||||||
|
+aside("Where can I find lemmatizer data?")
|
||||||
|
|
||||||
|
p
|
||||||
|
| To add a lookup lemmatizer to your language, import the #[code LOOKUP]
|
||||||
|
| table and #[code Lemmatizer], and create a new classmethod:
|
||||||
|
|
||||||
|
|
||||||
|
+code("__init__py (excerpt)").
|
||||||
|
# other imports here, plus lookup table and lookup lemmatizer
|
||||||
|
from .lemmatizer import LOOKUP
|
||||||
|
from ...lemmatizerlookup import Lemmatizer
|
||||||
|
|
||||||
|
class Xxxxx(Language):
|
||||||
|
lang = 'xx'
|
||||||
|
|
||||||
|
class Defaults(Language.Defaults):
|
||||||
|
# other language defaults here
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def create_lemmatizer(cls, nlp=None):
|
||||||
|
return Lemmatizer(LOOKUP)
|
||||||
|
|
||||||
+h(3, "tag-map") Tag map
|
+h(3, "tag-map") Tag map
|
||||||
|
|
||||||
p
|
p
|
||||||
|
|
Loading…
Reference in New Issue
Block a user