Update adding languages docs

This commit is contained in:
ines 2017-05-13 18:54:10 +02:00
parent a4a37a783e
commit 0095d5322b

View File

@ -105,35 +105,35 @@ p
+table(["File name", "Variables", "Description"]) +table(["File name", "Variables", "Description"])
+row +row
+cell #[+src(gh()) stop_words.py] +cell #[+src(gh("spacy-dev-resources", "templates/new_language/stop_words.py")) stop_words.py]
+cell #[code STOP_WORDS] (set) +cell #[code STOP_WORDS] (set)
+cell +cell
| List of most common words. Matching tokens will return #[code True] | List of most common words. Matching tokens will return #[code True]
| for #[code is_stop]. | for #[code is_stop].
+row +row
+cell #[+src(gh()) tokenizer_exceptions.py] +cell #[+src(gh("spacy-dev-resources", "templates/new_language/tokenizer_exceptions.py")) tokenizer_exceptions.py]
+cell #[code TOKENIZER_EXCEPTIONS] (dict), #[code TOKEN_MATCH] (regex) +cell #[code TOKENIZER_EXCEPTIONS] (dict), #[code TOKEN_MATCH] (regex)
+cell +cell
| Special-case rules for the tokenizer, for example, contractions | Special-case rules for the tokenizer, for example, contractions
| and abbreviations containing punctuation. | and abbreviations containing punctuation.
+row +row
+cell #[+src(gh()) punctuation.py] +cell #[+src(gh("spaCy", "spacy/lang/punctuation.py")) punctuation.py]
+cell +cell
| #[code TOKENIZER_PREFIXES], #[code TOKENIZER_SUFFIXES], | #[code TOKENIZER_PREFIXES], #[code TOKENIZER_SUFFIXES],
| #[code TOKENIZER_INFIXES] (dicts) | #[code TOKENIZER_INFIXES] (dicts)
+cell Regular expressions for splitting tokens, e.g. on punctuation. +cell Regular expressions for splitting tokens, e.g. on punctuation.
+row +row
+cell #[+src(gh()) lex_attrs.py] +cell #[+src(gh("spacy-dev-resources", "templates/new_language/lex_attrs.py")) lex_attrs.py]
+cell #[code LEX_ATTRS] (dict) +cell #[code LEX_ATTRS] (dict)
+cell +cell
| Functions for setting lexical attributes on tokens, e.g. | Functions for setting lexical attributes on tokens, e.g.
| #[code is_punct] or #[code like_num]. | #[code is_punct] or #[code like_num].
+row +row
+cell #[+src(gh()) tag_map.py] +cell #[+src(gh("spacy-dev-resources", "templates/new_language/tag_map.py")) tag_map.py]
+cell #[code TAG_MAP] (dict) +cell #[code TAG_MAP] (dict)
+cell +cell
| Dictionary mapping strings in your tag set to | Dictionary mapping strings in your tag set to
@ -143,10 +143,10 @@ p
+row +row
+cell #[+src(gh()) morph_rules.py] +cell #[+src(gh()) morph_rules.py]
+cell #[code MORPH_RULES] (dict) +cell #[code MORPH_RULES] (dict)
+cell +cell Exception rules for morphological analysis of irregular words.
+row +row
+cell #[+src(gh()) lemmatizer.py] +cell #[+src(gh("spacy-dev-resources", "templates/new_language/lemmatizer.py")) lemmatizer.py]
+cell #[code LOOKUP] (dict) +cell #[code LOOKUP] (dict)
+cell +cell
| Lookup-based lemmatization table. If more lemmatizer data is | Lookup-based lemmatization table. If more lemmatizer data is
@ -189,7 +189,7 @@ p
| newlines, and added as a multiline string. | newlines, and added as a multiline string.
+aside("What does spaCy consider a stop word?") +aside("What does spaCy consider a stop word?")
| There's no particularly principal logic behind what words should be | There's no particularly principled logic behind what words should be
| added to the stop list. Make a list that you think might be useful | added to the stop list. Make a list that you think might be useful
| to people and is likely to be unsurprising. As a rule of thumb, words | to people and is likely to be unsurprising. As a rule of thumb, words
| that are very rare are unlikely to be useful stop words. | that are very rare are unlikely to be useful stop words.
@ -363,6 +363,47 @@ p
+h(3, "lemmatizer") Lemmatizer +h(3, "lemmatizer") Lemmatizer
p
| As of v2.0, spaCy supports simple lookup-based lemmatization. This is
| usually the quickest and easiest way to get started. The data is stored
| in a dictionary mapping a string to its lemma. To determine a token's
| lemma, spaCy simply looks it up in the table. Here's an example from
| the Spanish language data:
+code("lang/es/lemmatizer.py (excerpt)").
LOOKUP = {
"aba": "abar",
"ababa": "abar",
"ababais": "abar",
"ababan": "abar",
"ababanes": "ababán",
"ababas": "abar",
"ababoles": "ababol",
"ababábites": "ababábite"
}
+aside("Where can I find lemmatizer data?")
p
| To add a lookup lemmatizer to your language, import the #[code LOOKUP]
| table and #[code Lemmatizer], and create a new classmethod:
+code("__init__py (excerpt)").
# other imports here, plus lookup table and lookup lemmatizer
from .lemmatizer import LOOKUP
from ...lemmatizerlookup import Lemmatizer
class Xxxxx(Language):
lang = 'xx'
class Defaults(Language.Defaults):
# other language defaults here
@classmethod
def create_lemmatizer(cls, nlp=None):
return Lemmatizer(LOOKUP)
+h(3, "tag-map") Tag map +h(3, "tag-map") Tag map
p p