Fix typos, long integers and tests

This commit is contained in:
ines 2017-05-29 01:06:49 +02:00
parent 804dbb8d25
commit 00b2094dc3
6 changed files with 95 additions and 41 deletions

View File

@ -20,6 +20,40 @@ def matcher(en_vocab):
return matcher return matcher
def test_matcher_from_api_docs(en_vocab):
matcher = Matcher(en_vocab)
pattern = [{'ORTH': 'test'}]
assert len(matcher) == 0
matcher.add('Rule', None, pattern)
assert len(matcher) == 1
matcher.remove('Rule')
assert 'Rule' not in matcher
matcher.add('Rule', None, pattern)
assert 'Rule' in matcher
on_match, patterns = matcher.get('Rule')
assert len(patterns[0])
def test_matcher_from_usage_docs(en_vocab):
text = "Wow 😀 This is really cool! 😂 😂"
doc = get_doc(en_vocab, words=text.split(' '))
pos_emoji = [u'😀', u'😃', u'😂', u'🤣', u'😊', u'😍']
pos_patterns = [[{'ORTH': emoji}] for emoji in pos_emoji]
def label_sentiment(matcher, doc, i, matches):
match_id, start, end = matches[i]
if doc.vocab.strings[match_id] == 'HAPPY':
doc.sentiment += 0.1
span = doc[start : end]
token = span.merge(norm='happy emoji')
matcher = Matcher(en_vocab)
matcher.add('HAPPY', label_sentiment, *pos_patterns)
matches = matcher(doc)
assert doc.sentiment != 0
assert doc[1].norm_ == 'happy emoji'
@pytest.mark.parametrize('words', [["Some", "words"]]) @pytest.mark.parametrize('words', [["Some", "words"]])
def test_matcher_init(en_vocab, words): def test_matcher_init(en_vocab, words):
matcher = Matcher(en_vocab) matcher = Matcher(en_vocab)

View File

@ -5,14 +5,13 @@ include ../../_includes/_mixins
p Match sequences of tokens, based on pattern rules. p Match sequences of tokens, based on pattern rules.
+infobox("⚠️ Deprecation note") +infobox("⚠️ Deprecation note")
.o-block | As of spaCy 2.0, #[code Matcher.add_pattern] and #[code Matcher.add_entity]
| As of spaCy 2.0, #[code Matcher.add_pattern] and #[code Matcher.add_entity] | are deprecated and have been replaced with a simpler
| are deprecated and have been replaced with a simpler | #[+api("matcher#add") #[code Matcher.add]] that lets you add a list of
| #[+api("matcher#add") #[code Matcher.add]] that lets you add a list of | patterns and a callback for a given match ID. #[code Matcher.get_entity]
| patterns and a callback for a given match ID. #[code Matcher.get_entity] | is now called #[+api("matcher#get") #[code matcher.get]].
| is now called #[+api("matcher#get") #[code matcher.get]]. | #[code Matcher.load] (not useful, as it didn't allow specifying callbacks),
| #[code Matcher.load] (not useful, as it didn't allow specifying callbacks), | and #[code Matcher.has_entity] (now redundant) have been removed.
| and #[code Matcher.has_entity] (now redundant) have been removed.
+h(2, "init") Matcher.__init__ +h(2, "init") Matcher.__init__
+tag method +tag method
@ -146,9 +145,9 @@ p Check whether the matcher contains rules for a match ID.
+aside-code("Example"). +aside-code("Example").
matcher = Matcher(nlp.vocab) matcher = Matcher(nlp.vocab)
assert 'Rule' in matcher == False assert 'Rule' not in matcher
matcher.add('Rule', None, [{'ORTH': 'test'}]) matcher.add('Rule', None, [{'ORTH': 'test'}])
assert 'Rule' in matcher == True assert 'Rule' in matcher
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
+row +row
@ -226,9 +225,9 @@ p
+aside-code("Example"). +aside-code("Example").
matcher.add('Rule', None, [{'ORTH': 'test'}]) matcher.add('Rule', None, [{'ORTH': 'test'}])
assert 'Rule' in matcher == True assert 'Rule' in matcher
matcher.remove('Rule') matcher.remove('Rule')
assert 'Rule' in matcher == False assert 'Rule' not in matcher
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
+row +row
@ -248,8 +247,7 @@ p
+aside-code("Example"). +aside-code("Example").
pattern = [{'ORTH': 'test'}] pattern = [{'ORTH': 'test'}]
matcher.add('Rule', None, pattern) matcher.add('Rule', None, pattern)
(on_match, patterns) = matcher.get('Rule') on_match, patterns = matcher.get('Rule')
assert patterns = [pattern]
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
+row +row

View File

@ -51,7 +51,7 @@ p Retrieve a string from a given hash, or vice versa.
+aside-code("Example"). +aside-code("Example").
stringstore = StringStore([u'apple', u'orange']) stringstore = StringStore([u'apple', u'orange'])
apple_hash = stringstore[u'apple'] apple_hash = stringstore[u'apple']
assert apple_hash == 8566208034543834098L assert apple_hash == 8566208034543834098
assert stringstore[apple_hash] == u'apple' assert stringstore[apple_hash] == u'apple'
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
@ -72,8 +72,8 @@ p Check whether a string is in the store.
+aside-code("Example"). +aside-code("Example").
stringstore = StringStore([u'apple', u'orange']) stringstore = StringStore([u'apple', u'orange'])
assert u'apple' in stringstore == True assert u'apple' in stringstore
assert u'cherry' in stringstore == False assert not u'cherry' in stringstore
+table(["Name", "Type", "Description"]) +table(["Name", "Type", "Description"])
+row +row
@ -115,7 +115,7 @@ p Add a string to the #[code StringStore].
stringstore = StringStore([u'apple', u'orange']) stringstore = StringStore([u'apple', u'orange'])
banana_hash = stringstore.add(u'banana') banana_hash = stringstore.add(u'banana')
assert len(stringstore) == 3 assert len(stringstore) == 3
assert banana_hash == 2525716904149915114L assert banana_hash == 2525716904149915114
assert stringstore[banana_hash] == u'banana' assert stringstore[banana_hash] == u'banana'
assert stringstore[u'banana'] == banana_hash assert stringstore[u'banana'] == banana_hash
@ -215,3 +215,25 @@ p Load state from a binary string.
+cell returns +cell returns
+cell #[code StringStore] +cell #[code StringStore]
+cell The #[code StringStore] object. +cell The #[code StringStore] object.
+h(2, "util") Utilities
+h(3, "hash_string") strings.hash_string
+tag function
p Get a 64-bit hash for a given string.
+aside-code("Example").
from spacy.strings import hash_string
assert hash_string(u'apple') == 8566208034543834098
+table(["Name", "Type", "Description"])
+row
+cell #[code string]
+cell unicode
+cell The string to hash.
+footrow
+cell returns
+cell uint64
+cell The hash.

View File

@ -34,10 +34,10 @@ p Create the vocabulary.
+row +row
+cell #[code strings] +cell #[code strings]
+cell #[code StringStore] +cell #[code StringStore] or list
+cell +cell
| A #[code StringStore] that maps strings to hash values, and vice | A #[+api("stringstore") #[code StringStore]] that maps
| versa. | strings to hash values, and vice versa, or a list of strings.
+footrow +footrow
+cell returns +cell returns

View File

@ -5,7 +5,7 @@ p
| #[+api("vocab") #[code Vocab]], that will be | #[+api("vocab") #[code Vocab]], that will be
| #[strong shared by multiple documents]. To save memory, spaCy also | #[strong shared by multiple documents]. To save memory, spaCy also
| encodes all strings to #[strong hash values] in this case for example, | encodes all strings to #[strong hash values] in this case for example,
| "coffee" has the hash #[code 3197928453018144401L]. Entity labels like | "coffee" has the hash #[code 3197928453018144401]. Entity labels like
| "ORG" and part-of-speech tags like "VERB" are also encoded. Internally, | "ORG" and part-of-speech tags like "VERB" are also encoded. Internally,
| spaCy only "speaks" in hash values. | spaCy only "speaks" in hash values.
@ -17,7 +17,7 @@ p
| #[strong Doc]: A processed container of tokens in context.#[br] | #[strong Doc]: A processed container of tokens in context.#[br]
| #[strong Vocab]: The collection of lexemes.#[br] | #[strong Vocab]: The collection of lexemes.#[br]
| #[strong StringStore]: The dictionary mapping hash values to strings, for | #[strong StringStore]: The dictionary mapping hash values to strings, for
| example #[code 3197928453018144401L] → "coffee". | example #[code 3197928453018144401] → "coffee".
+image +image
include ../../../assets/img/docs/vocab_stringstore.svg include ../../../assets/img/docs/vocab_stringstore.svg
@ -35,8 +35,8 @@ p
+code. +code.
doc = nlp(u'I like coffee') doc = nlp(u'I like coffee')
assert doc.vocab.strings[u'coffee'] == 3197928453018144401L assert doc.vocab.strings[u'coffee'] == 3197928453018144401
assert doc.vocab.strings[3197928453018144401L] == u'coffee' assert doc.vocab.strings[3197928453018144401] == u'coffee'
p p
| Now that all strings are encoded, the entries in the vocabulary | Now that all strings are encoded, the entries in the vocabulary
@ -65,9 +65,9 @@ p
+table(["text", "orth", "shape", "prefix", "suffix", "is_alpha", "is_digit"]) +table(["text", "orth", "shape", "prefix", "suffix", "is_alpha", "is_digit"])
- var style = [0, 1, 1, 0, 0, 1, 1] - var style = [0, 1, 1, 0, 0, 1, 1]
+annotation-row(["I", "4690420944186131903L", "X", "I", "I", true, false], style) +annotation-row(["I", "4690420944186131903", "X", "I", "I", true, false], style)
+annotation-row(["love", "3702023516439754181L", "xxxx", "l", "ove", true, false], style) +annotation-row(["love", "3702023516439754181", "xxxx", "l", "ove", true, false], style)
+annotation-row(["coffee", "3197928453018144401L", "xxxx", "c", "ffe", true, false], style) +annotation-row(["coffee", "3197928453018144401", "xxxx", "c", "ffe", true, false], style)
p p
| The mapping of words to hashes doesn't depend on any state. To make sure | The mapping of words to hashes doesn't depend on any state. To make sure
@ -79,7 +79,7 @@ p
p p
| However, hashes #[strong cannot be reversed] and there's no way to | However, hashes #[strong cannot be reversed] and there's no way to
| resolve #[code 3197928453018144401L] back to "coffee". All spaCy can do | resolve #[code 3197928453018144401] back to "coffee". All spaCy can do
| is look it up in the vocabulary. That's why you always need to make | is look it up in the vocabulary. That's why you always need to make
| sure all objects you create have access to the same vocabulary. If they | sure all objects you create have access to the same vocabulary. If they
| don't, spaCy might not be able to find the strings it needs. | don't, spaCy might not be able to find the strings it needs.
@ -89,17 +89,17 @@ p
from spacy.vocab import Vocab from spacy.vocab import Vocab
doc = nlp(u'I like coffee') # original Doc doc = nlp(u'I like coffee') # original Doc
assert doc.vocab.strings[u'coffee'] == 3197928453018144401L # get hash assert doc.vocab.strings[u'coffee'] == 3197928453018144401 # get hash
assert doc.vocab.strings[3197928453018144401L] == u'coffee' # 👍 assert doc.vocab.strings[3197928453018144401] == u'coffee' # 👍
empty_doc = Doc(Vocab()) # new Doc with empty Vocab empty_doc = Doc(Vocab()) # new Doc with empty Vocab
# doc.vocab.strings[3197928453018144401L] will raise an error :( # doc.vocab.strings[3197928453018144401] will raise an error :(
empty_doc.vocab.strings.add(u'coffee') # add "coffee" and generate hash empty_doc.vocab.strings.add(u'coffee') # add "coffee" and generate hash
assert doc.vocab.strings[3197928453018144401L] == u'coffee' # 👍 assert doc.vocab.strings[3197928453018144401] == u'coffee' # 👍
new_doc = Doc(doc.vocab) # create new doc with first doc's vocab new_doc = Doc(doc.vocab) # create new doc with first doc's vocab
assert doc.vocab.strings[3197928453018144401L] == u'coffee' # 👍 assert doc.vocab.strings[3197928453018144401] == u'coffee' # 👍
p p
| If the vocabulary doesn't contain a hash for "coffee", spaCy will | If the vocabulary doesn't contain a hash for "coffee", spaCy will

View File

@ -53,9 +53,9 @@ p
+code. +code.
doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion') doc = nlp(u'Apple is looking at buying U.K. startup for $1 billion')
apple = doc[0] apple = doc[0]
assert [apple.pos_, apple.pos] == [u'PROPN', 17049293600679659579L] assert [apple.pos_, apple.pos] == [u'PROPN', 17049293600679659579]
assert [apple.tag_, apple.tag] == [u'NNP', 15794550382381185553L] assert [apple.tag_, apple.tag] == [u'NNP', 15794550382381185553]
assert [apple.shape_, apple.shape] == [u'Xxxxx', 16072095006890171862L] assert [apple.shape_, apple.shape] == [u'Xxxxx', 16072095006890171862]
assert apple.is_alpha == True assert apple.is_alpha == True
assert apple.is_punct == False assert apple.is_punct == False
@ -72,16 +72,16 @@ p
+code. +code.
doc = nlp(u'I love coffee') doc = nlp(u'I love coffee')
coffee_hash = nlp.vocab.strings[u'coffee'] # 3197928453018144401L coffee_hash = nlp.vocab.strings[u'coffee'] # 3197928453018144401
coffee_text = nlp.vocab.strings[coffee_hash] # 'coffee' coffee_text = nlp.vocab.strings[coffee_hash] # 'coffee'
assert doc[2].orth == coffee_hash == 3197928453018144401L assert doc[2].orth == coffee_hash == 3197928453018144401
assert doc[2].text == coffee_text == u'coffee' assert doc[2].text == coffee_text == u'coffee'
beer_hash = doc.vocab.strings.add(u'beer') # 3073001599257881079L beer_hash = doc.vocab.strings.add(u'beer') # 3073001599257881079
beer_text = doc.vocab.strings[beer_hash] # 'beer' beer_text = doc.vocab.strings[beer_hash] # 'beer'
unicorn_hash = doc.vocab.strings.add(u'🦄 ') # 18234233413267120783L unicorn_hash = doc.vocab.strings.add(u'🦄 ') # 18234233413267120783
unicorn_text = doc.vocab.strings[unicorn_hash] # '🦄 ' unicorn_text = doc.vocab.strings[unicorn_hash] # '🦄 '
+infobox +infobox