diff --git a/examples/training/train_tensorizer.py b/examples/training/train_tensorizer.py index 65af7aaab..9720600f0 100644 --- a/examples/training/train_tensorizer.py +++ b/examples/training/train_tensorizer.py @@ -2,7 +2,7 @@ import plac import spacy import thinc.extra.datasets -from spacy.util import minibatch +from spacy.util import minibatch, use_gpu import tqdm @@ -12,7 +12,7 @@ def load_imdb(): train_texts, _ = zip(*train) dev_texts, _ = zip(*dev) nlp.add_pipe(nlp.create_pipe('sentencizer')) - return list(get_sentences(nlp, train_texts)), list(get_sentences(nlp, dev_texts)) + return list(train_texts), list(dev_texts) def get_sentences(nlp, texts): @@ -21,12 +21,20 @@ def get_sentences(nlp, texts): yield sent.text -def main(): +def prefer_gpu(): + used = spacy.util.use_gpu(0) + if used is None: + return False + else: + return True + +def main(vectors_model): + use_gpu = prefer_gpu() + print("Using GPU?", use_gpu) print("Load data") train_texts, dev_texts = load_imdb() - train_texts = train_texts[:1000] print("Load vectors") - nlp = spacy.load('en_vectors_web_lg') + nlp = spacy.load(vectors_model) print("Start training") nlp.add_pipe(nlp.create_pipe('tagger')) tensorizer = nlp.create_pipe('tensorizer') @@ -38,8 +46,7 @@ def main(): for i, batch in enumerate(minibatch(tqdm.tqdm(train_texts))): docs = [nlp.make_doc(text) for text in batch] tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=0.5) - if i % 10 == 0: - print(losses) + print(losses) if __name__ == '__main__': plac.call(main)