Merge branch 'master' into feature/coref

This commit is contained in:
svlandeg 2022-05-25 13:01:56 +02:00
commit 015050f42c
82 changed files with 1653 additions and 532 deletions

View File

@ -64,12 +64,12 @@ steps:
displayName: "Run GPU tests"
condition: eq(${{ parameters.gpu }}, true)
# - script: |
# python -m spacy download ca_core_news_sm
# python -m spacy download ca_core_news_md
# python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
# displayName: 'Test download CLI'
# condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
displayName: 'Test download CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -m spacy convert extra/example_data/ner_example_data/ner-token-per-line-conll2003.json .
@ -93,17 +93,17 @@ steps:
displayName: 'Test train CLI'
condition: eq(variables['python_version'], '3.8')
# - script: |
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
# PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
# displayName: 'Test assemble CLI'
# condition: eq(variables['python_version'], '3.8')
#
# - script: |
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
# python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
# displayName: 'Test assemble CLI vectors warning'
# condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
displayName: 'Test assemble CLI'
condition: eq(variables['python_version'], '3.8')
- script: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
displayName: 'Test assemble CLI vectors warning'
condition: eq(variables['python_version'], '3.8')
- script: |
python .github/validate_universe_json.py website/meta/universe.json

View File

@ -10,6 +10,7 @@ jobs:
fail-fast: false
matrix:
branch: [master, v4]
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Trigger buildkite build

View File

@ -10,6 +10,7 @@ jobs:
fail-fast: false
matrix:
branch: [master, v4]
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- name: Checkout

View File

@ -1,9 +1,10 @@
repos:
- repo: https://github.com/ambv/black
rev: 21.6b0
rev: 22.3.0
hooks:
- id: black
language_version: python3.7
additional_dependencies: ['click==8.0.4']
- repo: https://gitlab.com/pycqa/flake8
rev: 3.9.2
hooks:

View File

@ -0,0 +1,36 @@
# Explosion-bot
Explosion-bot is a robot that can be invoked to help with running particular test commands.
## Permissions
Only maintainers have permissions to summon explosion-bot. Each of the open source repos that use explosion-bot has its own team(s) of maintainers, and only github users who are members of those teams can successfully run bot commands.
## Running robot commands
To summon the robot, write a github comment on the issue/PR you wish to test. The comment must be in the following format:
```
@explosion-bot please test_gpu
```
Some things to note:
* The `@explosion-bot please` must be the beginning of the command - you cannot add anything in front of this or else the robot won't know how to parse it. Adding anything at the end aside from the test name will also confuse the robot, so keep it simple!
* The command name (such as `test_gpu`) must be one of the tests that the bot knows how to run. The available commands are documented in the bot's [workflow config](https://github.com/explosion/spaCy/blob/master/.github/workflows/explosionbot.yml#L26) and must match exactly one of the commands listed there.
* The robot can't do multiple things at once, so if you want it to run multiple tests, you'll have to summon it with one comment per test.
* For the `test_gpu` command, you can specify an optional thinc branch (from the spaCy repo) or a spaCy branch (from the thinc repo) with either the `--thinc-branch` or `--spacy-branch` flags. By default, the bot will pull in the PR branch from the repo where the command was issued, and the main branch of the other repository. However, if you need to run against another branch, you can say (for example):
```
@explosion-bot please test_gpu --thinc-branch develop
```
You can also specify a branch from an unmerged PR:
```
@explosion-bot please test_gpu --thinc-branch refs/pull/633/head
```
## Troubleshooting
If the robot isn't responding to commands as expected, you can check its logs in the [Github Action](https://github.com/explosion/spaCy/actions/workflows/explosionbot.yml).
For each command sent to the bot, there should be a run of the `explosion-bot` workflow. In the `Install and run explosion-bot` step, towards the ends of the logs you should see info about the configuration that the bot was run with, as well as any errors that the bot encountered.

View File

@ -5,8 +5,8 @@ requires = [
"cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.14,<8.1.0",
"blis>=0.4.0,<0.8.0",
"thinc>=8.1.0.dev0,<8.2.0",
"blis>=0.9.0,<0.10.0",
"pathy",
"numpy>=1.15.0",
]

View File

@ -3,8 +3,8 @@ spacy-legacy>=3.0.9,<3.1.0
spacy-loggers>=1.0.0,<2.0.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.14,<8.1.0
blis>=0.4.0,<0.8.0
thinc>=8.1.0.dev0,<8.2.0
blis>=0.9.0,<0.10.0
ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.1.0
@ -16,7 +16,7 @@ pathy>=0.3.5
numpy>=1.15.0
requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
jinja2
langcodes>=3.2.0,<4.0.0
# Official Python utilities
@ -31,7 +31,7 @@ pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0
flake8>=3.8.0,<3.10.0
hypothesis>=3.27.0,<7.0.0
mypy==0.910
mypy>=0.910,<=0.960
types-dataclasses>=0.1.3; python_version < "3.7"
types-mock>=0.1.1
types-requests

View File

@ -38,7 +38,7 @@ setup_requires =
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0
thinc>=8.0.14,<8.1.0
thinc>=8.1.0.dev0,<8.2.0
install_requires =
# Our libraries
spacy-legacy>=3.0.9,<3.1.0
@ -46,8 +46,8 @@ install_requires =
murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.14,<8.1.0
blis>=0.4.0,<0.8.0
thinc>=8.1.0.dev0,<8.2.0
blis>=0.9.0,<0.10.0
wasabi>=0.9.1,<1.1.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
@ -57,7 +57,7 @@ install_requires =
tqdm>=4.38.0,<5.0.0
numpy>=1.15.0
requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.9.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
jinja2
# Official Python utilities
setuptools

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.3.0.dev0"
__version__ = "3.3.0"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"

View File

@ -6,6 +6,7 @@ import sys
import srsly
from wasabi import Printer, MESSAGES, msg
import typer
import math
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli
@ -30,6 +31,12 @@ DEP_LABEL_THRESHOLD = 20
# Minimum number of expected examples to train a new pipeline
BLANK_MODEL_MIN_THRESHOLD = 100
BLANK_MODEL_THRESHOLD = 2000
# Arbitrary threshold where SpanCat performs well
SPAN_DISTINCT_THRESHOLD = 1
# Arbitrary threshold where SpanCat performs well
BOUNDARY_DISTINCT_THRESHOLD = 1
# Arbitrary threshold for filtering span lengths during reporting (percentage)
SPAN_LENGTH_THRESHOLD_PERCENTAGE = 90
@debug_cli.command(
@ -247,6 +254,69 @@ def debug_data(
msg.warn(f"No examples for texts WITHOUT new label '{label}'")
has_no_neg_warning = True
with msg.loading("Obtaining span characteristics..."):
span_characteristics = _get_span_characteristics(
train_dataset, gold_train_data, spans_key
)
msg.info(f"Span characteristics for spans_key '{spans_key}'")
msg.info("SD = Span Distinctiveness, BD = Boundary Distinctiveness")
_print_span_characteristics(span_characteristics)
_span_freqs = _get_spans_length_freq_dist(
gold_train_data["spans_length"][spans_key]
)
_filtered_span_freqs = _filter_spans_length_freq_dist(
_span_freqs, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
)
msg.info(
f"Over {SPAN_LENGTH_THRESHOLD_PERCENTAGE}% of spans have lengths of 1 -- "
f"{max(_filtered_span_freqs.keys())} "
f"(min={span_characteristics['min_length']}, max={span_characteristics['max_length']}). "
f"The most common span lengths are: {_format_freqs(_filtered_span_freqs)}. "
"If you are using the n-gram suggester, note that omitting "
"infrequent n-gram lengths can greatly improve speed and "
"memory usage."
)
msg.text(
f"Full distribution of span lengths: {_format_freqs(_span_freqs)}",
show=verbose,
)
# Add report regarding span characteristics
if span_characteristics["avg_sd"] < SPAN_DISTINCT_THRESHOLD:
msg.warn("Spans may not be distinct from the rest of the corpus")
else:
msg.good("Spans are distinct from the rest of the corpus")
p_spans = span_characteristics["p_spans"].values()
all_span_tokens: Counter = sum(p_spans, Counter())
most_common_spans = [w for w, _ in all_span_tokens.most_common(10)]
msg.text(
"10 most common span tokens: {}".format(
_format_labels(most_common_spans)
),
show=verbose,
)
# Add report regarding span boundary characteristics
if span_characteristics["avg_bd"] < BOUNDARY_DISTINCT_THRESHOLD:
msg.warn("Boundary tokens are not distinct from the rest of the corpus")
else:
msg.good("Boundary tokens are distinct from the rest of the corpus")
p_bounds = span_characteristics["p_bounds"].values()
all_span_bound_tokens: Counter = sum(p_bounds, Counter())
most_common_bounds = [w for w, _ in all_span_bound_tokens.most_common(10)]
msg.text(
"10 most common span boundary tokens: {}".format(
_format_labels(most_common_bounds)
),
show=verbose,
)
if has_low_data_warning:
msg.text(
f"To train a new span type, your data should include at "
@ -647,6 +717,9 @@ def _compile_gold(
"words": Counter(),
"roots": Counter(),
"spancat": dict(),
"spans_length": dict(),
"spans_per_type": dict(),
"sb_per_type": dict(),
"ws_ents": 0,
"boundary_cross_ents": 0,
"n_words": 0,
@ -692,14 +765,59 @@ def _compile_gold(
elif label == "-":
data["ner"]["-"] += 1
if "spancat" in factory_names:
for span_key in list(eg.reference.spans.keys()):
if span_key not in data["spancat"]:
data["spancat"][span_key] = Counter()
for i, span in enumerate(eg.reference.spans[span_key]):
for spans_key in list(eg.reference.spans.keys()):
# Obtain the span frequency
if spans_key not in data["spancat"]:
data["spancat"][spans_key] = Counter()
for i, span in enumerate(eg.reference.spans[spans_key]):
if span.label_ is None:
continue
else:
data["spancat"][span_key][span.label_] += 1
data["spancat"][spans_key][span.label_] += 1
# Obtain the span length
if spans_key not in data["spans_length"]:
data["spans_length"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ is None:
continue
if span.label_ not in data["spans_length"][spans_key]:
data["spans_length"][spans_key][span.label_] = []
data["spans_length"][spans_key][span.label_].append(len(span))
# Obtain spans per span type
if spans_key not in data["spans_per_type"]:
data["spans_per_type"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ not in data["spans_per_type"][spans_key]:
data["spans_per_type"][spans_key][span.label_] = []
data["spans_per_type"][spans_key][span.label_].append(span)
# Obtain boundary tokens per span type
window_size = 1
if spans_key not in data["sb_per_type"]:
data["sb_per_type"][spans_key] = dict()
for span in gold.spans[spans_key]:
if span.label_ not in data["sb_per_type"][spans_key]:
# Creating a data structure that holds the start and
# end tokens for each span type
data["sb_per_type"][spans_key][span.label_] = {
"start": [],
"end": [],
}
for offset in range(window_size):
sb_start_idx = span.start - (offset + 1)
if sb_start_idx >= 0:
data["sb_per_type"][spans_key][span.label_]["start"].append(
gold[sb_start_idx : sb_start_idx + 1]
)
sb_end_idx = span.end + (offset + 1)
if sb_end_idx <= len(gold):
data["sb_per_type"][spans_key][span.label_]["end"].append(
gold[sb_end_idx - 1 : sb_end_idx]
)
if "textcat" in factory_names or "textcat_multilabel" in factory_names:
data["cats"].update(gold.cats)
if any(val not in (0, 1) for val in gold.cats.values()):
@ -770,6 +888,16 @@ def _format_labels(
return ", ".join([f"'{l}'" for l in cast(Iterable[str], labels)])
def _format_freqs(freqs: Dict[int, float], sort: bool = True) -> str:
if sort:
freqs = dict(sorted(freqs.items()))
_freqs = [(str(k), v) for k, v in freqs.items()]
return ", ".join(
[f"{l} ({c}%)" for l, c in cast(Iterable[Tuple[str, float]], _freqs)]
)
def _get_examples_without_label(
data: Sequence[Example],
label: str,
@ -824,3 +952,158 @@ def _get_labels_from_spancat(nlp: Language) -> Dict[str, Set[str]]:
labels[pipe.key] = set()
labels[pipe.key].update(pipe.labels)
return labels
def _gmean(l: List) -> float:
"""Compute geometric mean of a list"""
return math.exp(math.fsum(math.log(i) for i in l) / len(l))
def _wgt_average(metric: Dict[str, float], frequencies: Counter) -> float:
total = sum(value * frequencies[span_type] for span_type, value in metric.items())
return total / sum(frequencies.values())
def _get_distribution(docs, normalize: bool = True) -> Counter:
"""Get the frequency distribution given a set of Docs"""
word_counts: Counter = Counter()
for doc in docs:
for token in doc:
# Normalize the text
t = token.text.lower().replace("``", '"').replace("''", '"')
word_counts[t] += 1
if normalize:
total = sum(word_counts.values(), 0.0)
word_counts = Counter({k: v / total for k, v in word_counts.items()})
return word_counts
def _get_kl_divergence(p: Counter, q: Counter) -> float:
"""Compute the Kullback-Leibler divergence from two frequency distributions"""
total = 0.0
for word, p_word in p.items():
total += p_word * math.log(p_word / q[word])
return total
def _format_span_row(span_data: List[Dict], labels: List[str]) -> List[Any]:
"""Compile into one list for easier reporting"""
d = {
label: [label] + list(round(d[label], 2) for d in span_data) for label in labels
}
return list(d.values())
def _get_span_characteristics(
examples: List[Example], compiled_gold: Dict[str, Any], spans_key: str
) -> Dict[str, Any]:
"""Obtain all span characteristics"""
data_labels = compiled_gold["spancat"][spans_key]
# Get lengths
span_length = {
label: _gmean(l)
for label, l in compiled_gold["spans_length"][spans_key].items()
}
min_lengths = [min(l) for l in compiled_gold["spans_length"][spans_key].values()]
max_lengths = [max(l) for l in compiled_gold["spans_length"][spans_key].values()]
# Get relevant distributions: corpus, spans, span boundaries
p_corpus = _get_distribution([eg.reference for eg in examples], normalize=True)
p_spans = {
label: _get_distribution(spans, normalize=True)
for label, spans in compiled_gold["spans_per_type"][spans_key].items()
}
p_bounds = {
label: _get_distribution(sb["start"] + sb["end"], normalize=True)
for label, sb in compiled_gold["sb_per_type"][spans_key].items()
}
# Compute for actual span characteristics
span_distinctiveness = {
label: _get_kl_divergence(freq_dist, p_corpus)
for label, freq_dist in p_spans.items()
}
sb_distinctiveness = {
label: _get_kl_divergence(freq_dist, p_corpus)
for label, freq_dist in p_bounds.items()
}
return {
"sd": span_distinctiveness,
"bd": sb_distinctiveness,
"lengths": span_length,
"min_length": min(min_lengths),
"max_length": max(max_lengths),
"avg_sd": _wgt_average(span_distinctiveness, data_labels),
"avg_bd": _wgt_average(sb_distinctiveness, data_labels),
"avg_length": _wgt_average(span_length, data_labels),
"labels": list(data_labels.keys()),
"p_spans": p_spans,
"p_bounds": p_bounds,
}
def _print_span_characteristics(span_characteristics: Dict[str, Any]):
"""Print all span characteristics into a table"""
headers = ("Span Type", "Length", "SD", "BD")
# Prepare table data with all span characteristics
table_data = [
span_characteristics["lengths"],
span_characteristics["sd"],
span_characteristics["bd"],
]
table = _format_span_row(
span_data=table_data, labels=span_characteristics["labels"]
)
# Prepare table footer with weighted averages
footer_data = [
span_characteristics["avg_length"],
span_characteristics["avg_sd"],
span_characteristics["avg_bd"],
]
footer = ["Wgt. Average"] + [str(round(f, 2)) for f in footer_data]
msg.table(table, footer=footer, header=headers, divider=True)
def _get_spans_length_freq_dist(
length_dict: Dict, threshold=SPAN_LENGTH_THRESHOLD_PERCENTAGE
) -> Dict[int, float]:
"""Get frequency distribution of spans length under a certain threshold"""
all_span_lengths = []
for _, lengths in length_dict.items():
all_span_lengths.extend(lengths)
freq_dist: Counter = Counter()
for i in all_span_lengths:
if freq_dist.get(i):
freq_dist[i] += 1
else:
freq_dist[i] = 1
# We will be working with percentages instead of raw counts
freq_dist_percentage = {}
for span_length, count in freq_dist.most_common():
percentage = (count / len(all_span_lengths)) * 100.0
percentage = round(percentage, 2)
freq_dist_percentage[span_length] = percentage
return freq_dist_percentage
def _filter_spans_length_freq_dist(
freq_dist: Dict[int, float], threshold: int
) -> Dict[int, float]:
"""Filter frequency distribution with respect to a threshold
We're going to filter all the span lengths that fall
around a percentage threshold when summed.
"""
total = 0.0
filtered_freq_dist = {}
for span_length, dist in freq_dist.items():
if total >= threshold:
break
else:
filtered_freq_dist[span_length] = dist
total += dist
return filtered_freq_dist

View File

@ -12,6 +12,9 @@ from .._util import project_cli, Arg, Opt, PROJECT_FILE, load_project_config
from .._util import get_checksum, download_file, git_checkout, get_git_version
from .._util import SimpleFrozenDict, parse_config_overrides
# Whether assets are extra if `extra` is not set.
EXTRA_DEFAULT = False
@project_cli.command(
"assets",
@ -21,7 +24,8 @@ def project_assets_cli(
# fmt: off
ctx: typer.Context, # This is only used to read additional arguments
project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False),
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+.")
sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."),
extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.")
# fmt: on
):
"""Fetch project assets like datasets and pretrained weights. Assets are
@ -32,7 +36,12 @@ def project_assets_cli(
DOCS: https://spacy.io/api/cli#project-assets
"""
overrides = parse_config_overrides(ctx.args)
project_assets(project_dir, overrides=overrides, sparse_checkout=sparse_checkout)
project_assets(
project_dir,
overrides=overrides,
sparse_checkout=sparse_checkout,
extra=extra,
)
def project_assets(
@ -40,17 +49,29 @@ def project_assets(
*,
overrides: Dict[str, Any] = SimpleFrozenDict(),
sparse_checkout: bool = False,
extra: bool = False,
) -> None:
"""Fetch assets for a project using DVC if possible.
project_dir (Path): Path to project directory.
sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files
needed.
extra (bool): Whether to download all assets, including those marked as 'extra'.
"""
project_path = ensure_path(project_dir)
config = load_project_config(project_path, overrides=overrides)
assets = config.get("assets", {})
assets = [
asset
for asset in config.get("assets", [])
if extra or not asset.get("extra", EXTRA_DEFAULT)
]
if not assets:
msg.warn(f"No assets specified in {PROJECT_FILE}", exits=0)
msg.warn(
f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)",
exits=0,
)
msg.info(f"Fetching {len(assets)} asset(s)")
for asset in assets:
dest = (project_dir / asset["dest"]).resolve()
checksum = asset.get("checksum")

View File

@ -4,7 +4,7 @@ spaCy's built in visualization suite for dependencies and named entities.
DOCS: https://spacy.io/api/top-level#displacy
USAGE: https://spacy.io/usage/visualizers
"""
from typing import List, Union, Iterable, Optional, Dict, Any, Callable
from typing import Union, Iterable, Optional, Dict, Any, Callable
import warnings
from .render import DependencyRenderer, EntityRenderer, SpanRenderer
@ -56,6 +56,10 @@ def render(
renderer_func, converter = factories[style]
renderer = renderer_func(options=options)
parsed = [converter(doc, options) for doc in docs] if not manual else docs # type: ignore
if manual:
for doc in docs:
if isinstance(doc, dict) and "ents" in doc:
doc["ents"] = sorted(doc["ents"], key=lambda x: (x["start"], x["end"]))
_html["parsed"] = renderer.render(parsed, page=page, minify=minify).strip() # type: ignore
html = _html["parsed"]
if RENDER_WRAPPER is not None:

View File

@ -1,4 +1,5 @@
import warnings
from .compat import Literal
class ErrorsWithCodes(type):
@ -26,7 +27,10 @@ def setup_default_warnings():
filter_warning("once", error_msg="[W114]")
def filter_warning(action: str, error_msg: str):
def filter_warning(
action: Literal["default", "error", "ignore", "always", "module", "once"],
error_msg: str,
):
"""Customize how spaCy should handle a certain warning.
error_msg (str): e.g. "W006", or a full error message
@ -199,6 +203,7 @@ class Warnings(metaclass=ErrorsWithCodes):
W118 = ("Term '{term}' not found in glossary. It may however be explained in documentation "
"for the corpora used to train the language. Please check "
"`nlp.meta[\"sources\"]` for any relevant links.")
W119 = ("Overriding pipe name in `config` is not supported. Ignoring override '{name_in_config}'.")
class Errors(metaclass=ErrorsWithCodes):
@ -444,10 +449,10 @@ class Errors(metaclass=ErrorsWithCodes):
"same, but found '{nlp}' and '{vocab}' respectively.")
E152 = ("The attribute {attr} is not supported for token patterns. "
"Please use the option `validate=True` with the Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
"EntityRuler or AttributeRuler for more details.")
E153 = ("The value type {vtype} is not supported for token patterns. "
"Please use the option validate=True with Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
"EntityRuler or AttributeRuler for more details.")
E154 = ("One of the attributes or values is not supported for token "
"patterns. Please use the option `validate=True` with the Matcher, "
"PhraseMatcher, or EntityRuler for more details.")
@ -905,7 +910,16 @@ class Errors(metaclass=ErrorsWithCodes):
E1026 = ("Edit tree has an invalid format:\n{errors}")
E1027 = ("AlignmentArray only supports slicing with a step of 1.")
E1028 = ("AlignmentArray only supports indexing using an int or a slice.")
E1029 = ("Edit tree cannot be applied to form.")
E1030 = ("Edit tree identifier out of range.")
E1031 = ("Could not find gold transition - see logs above.")
E1032 = ("`{var}` should not be {forbidden}, but received {value}.")
E1033 = ("Dimension {name} invalid -- only nO, nF, nP")
E1034 = ("Node index {i} out of bounds ({length})")
E1035 = ("Token index {i} out of bounds ({length})")
E1036 = ("Cannot index into NoneNode")
E1037 = ("Invalid attribute value '{attr}'.")
# Deprecated model shortcuts, only used in errors and warnings
OLD_MODEL_SHORTCUTS = {

View File

@ -273,6 +273,7 @@ GLOSSARY = {
"relcl": "relative clause modifier",
"reparandum": "overridden disfluency",
"root": "root",
"ROOT": "root",
"vocative": "vocative",
"xcomp": "open clausal complement",
# Dependency labels (German)

View File

@ -9,14 +9,14 @@ Example sentences to test spaCy and its language models.
sentences = [
"Apple está buscando comprar una startup del Reino Unido por mil millones de dólares.",
"Los coches autónomos delegan la responsabilidad del seguro en sus fabricantes.",
"San Francisco analiza prohibir los robots delivery.",
"San Francisco analiza prohibir los robots de reparto.",
"Londres es una gran ciudad del Reino Unido.",
"El gato come pescado.",
"Veo al hombre con el telescopio.",
"La araña come moscas.",
"El pingüino incuba en su nido sobre el hielo.",
"¿Dónde estais?",
"¿Quién es el presidente Francés?",
"¿Dónde está encuentra la capital de Argentina?",
"¿Dónde estáis?",
"¿Quién es el presidente francés?",
"¿Dónde se encuentra la capital de Argentina?",
"¿Cuándo nació José de San Martín?",
]

View File

@ -1,82 +1,80 @@
STOP_WORDS = set(
"""
actualmente acuerdo adelante ademas además adrede afirmó agregó ahi ahora ahí
al algo alguna algunas alguno algunos algún alli allí alrededor ambos ampleamos
antano antaño ante anterior antes apenas aproximadamente aquel aquella aquellas
aquello aquellos aqui aquél aquélla aquéllas aquéllos aquí arriba arribaabajo
aseguró asi así atras aun aunque ayer añadió aún
a acuerdo adelante ademas además afirmó agregó ahi ahora ahí al algo alguna
algunas alguno algunos algún alli allí alrededor ambos ante anterior antes
apenas aproximadamente aquel aquella aquellas aquello aquellos aqui aquél
aquélla aquéllas aquéllos aquí arriba aseguró asi así atras aun aunque añadió
aún
bajo bastante bien breve buen buena buenas bueno buenos
cada casi cerca cierta ciertas cierto ciertos cinco claro comentó como con
conmigo conocer conseguimos conseguir considera consideró consigo consigue
consiguen consigues contigo contra cosas creo cual cuales cualquier cuando
cuanta cuantas cuanto cuantos cuatro cuenta cuál cuáles cuándo cuánta cuántas
cuánto cuántos cómo
cada casi cierta ciertas cierto ciertos cinco claro comentó como con conmigo
conocer conseguimos conseguir considera consideró consigo consigue consiguen
consigues contigo contra creo cual cuales cualquier cuando cuanta cuantas
cuanto cuantos cuatro cuenta cuál cuáles cuándo cuánta cuántas cuánto cuántos
cómo
da dado dan dar de debajo debe deben debido decir dejó del delante demasiado
demás dentro deprisa desde despacio despues después detras detrás dia dias dice
dicen dicho dieron diferente diferentes dijeron dijo dio donde dos durante día
días dónde
dicen dicho dieron diez diferente diferentes dijeron dijo dio doce donde dos
durante día días dónde
ejemplo el ella ellas ello ellos embargo empleais emplean emplear empleas
empleo en encima encuentra enfrente enseguida entonces entre era eramos eran
eras eres es esa esas ese eso esos esta estaba estaban estado estados estais
estamos estan estar estará estas este esto estos estoy estuvo está están ex
excepto existe existen explicó expresó él ésa ésas ése ésos ésta éstas éste
éstos
e el ella ellas ello ellos embargo en encima encuentra enfrente enseguida
entonces entre era eramos eran eras eres es esa esas ese eso esos esta estaba
estaban estado estados estais estamos estan estar estará estas este esto estos
estoy estuvo está están excepto existe existen explicó expresó él ésa ésas ése
ésos ésta éstas éste éstos
fin final fue fuera fueron fui fuimos
general gran grandes gueno
gran grande grandes
ha haber habia habla hablan habrá había habían hace haceis hacemos hacen hacer
hacerlo haces hacia haciendo hago han hasta hay haya he hecho hemos hicieron
hizo horas hoy hubo
hizo hoy hubo
igual incluso indicó informo informó intenta intentais intentamos intentan
intentar intentas intento ir
igual incluso indicó informo informó ir
junto
la lado largo las le lejos les llegó lleva llevar lo los luego lugar
la lado largo las le les llegó lleva llevar lo los luego
mal manera manifestó mas mayor me mediante medio mejor mencionó menos menudo mi
mia mias mientras mio mios mis misma mismas mismo mismos modo momento mucha
muchas mucho muchos muy más mía mías mío míos
mia mias mientras mio mios mis misma mismas mismo mismos modo mucha muchas
mucho muchos muy más mía mías mío míos
nada nadie ni ninguna ningunas ninguno ningunos ningún no nos nosotras nosotros
nuestra nuestras nuestro nuestros nueva nuevas nuevo nuevos nunca
nuestra nuestras nuestro nuestros nueva nuevas nueve nuevo nuevos nunca
ocho os otra otras otro otros
o ocho once os otra otras otro otros
pais para parece parte partir pasada pasado paìs peor pero pesar poca pocas
poco pocos podeis podemos poder podria podriais podriamos podrian podrias podrá
para parece parte partir pasada pasado paìs peor pero pesar poca pocas poco
pocos podeis podemos poder podria podriais podriamos podrian podrias podrá
podrán podría podrían poner por porque posible primer primera primero primeros
principalmente pronto propia propias propio propios proximo próximo próximos
pudo pueda puede pueden puedo pues
pronto propia propias propio propios proximo próximo próximos pudo pueda puede
pueden puedo pues
qeu que quedó queremos quien quienes quiere quiza quizas quizá quizás quién quiénes qué
qeu que quedó queremos quien quienes quiere quiza quizas quizá quizás quién
quiénes qué
raras realizado realizar realizó repente respecto
realizado realizar realizó repente respecto
sabe sabeis sabemos saben saber sabes salvo se sea sean segun segunda segundo
según seis ser sera será serán sería señaló si sido siempre siendo siete sigue
siguiente sin sino sobre sois sola solamente solas solo solos somos son soy
soyos su supuesto sus suya suyas suyo sólo
siguiente sin sino sobre sois sola solamente solas solo solos somos son soy su
supuesto sus suya suyas suyo suyos sólo
tal tambien también tampoco tan tanto tarde te temprano tendrá tendrán teneis
tenemos tener tenga tengo tenido tenía tercera ti tiempo tiene tienen toda
todas todavia todavía todo todos total trabaja trabajais trabajamos trabajan
trabajar trabajas trabajo tras trata través tres tu tus tuvo tuya tuyas tuyo
tuyos
tenemos tener tenga tengo tenido tenía tercera tercero ti tiene tienen toda
todas todavia todavía todo todos total tras trata través tres tu tus tuvo tuya
tuyas tuyo tuyos
ultimo un una unas uno unos usa usais usamos usan usar usas uso usted ustedes
u ultimo un una unas uno unos usa usais usamos usan usar usas uso usted ustedes
última últimas último últimos
va vais valor vamos van varias varios vaya veces ver verdad verdadera verdadero
vez vosotras vosotros voy vuestra vuestras vuestro vuestros
va vais vamos van varias varios vaya veces ver verdad verdadera verdadero vez
vosotras vosotros voy vuestra vuestras vuestro vuestros
ya yo
y ya yo
""".split()
)

View File

@ -2,22 +2,29 @@ from ...attrs import LIKE_NUM
_num_words = [
"không",
"một",
"hai",
"ba",
"bốn",
"năm",
"sáu",
"bảy",
"bẩy",
"tám",
"chín",
"mười",
"chục",
"trăm",
"nghìn",
"tỷ",
"không", # Zero
"một", # One
"mốt", # Also one, irreplacable in niché cases for unit digit such as "51"="năm mươi mốt"
"hai", # Two
"ba", # Three
"bốn", # Four
"", # Also four, used in certain cases for unit digit such as "54"="năm mươi tư"
"năm", # Five
"lăm", # Also five, irreplacable in niché cases for unit digit such as "55"="năm mươi lăm"
"sáu", # Six
"bảy", # Seven
"bẩy", # Also seven, old fashioned
"tám", # Eight
"chín", # Nine
"mười", # Ten
"chục", # Also ten, used for counting in tens such as "20 eggs"="hai chục trứng"
"trăm", # Hundred
"nghìn", # Thousand
"ngàn", # Also thousand, used in the south
"vạn", # Ten thousand
"triệu", # Million
"tỷ", # Billion
"tỉ", # Also billion, used in combinatorics such as "tỉ_phú"="billionaire"
]

View File

@ -774,6 +774,9 @@ class Language:
name = name if name is not None else factory_name
if name in self.component_names:
raise ValueError(Errors.E007.format(name=name, opts=self.component_names))
# Overriding pipe name in the config is not supported and will be ignored.
if "name" in config:
warnings.warn(Warnings.W119.format(name_in_config=config.pop("name")))
if source is not None:
# We're loading the component from a model. After loading the
# component, we know its real factory name

View File

@ -85,7 +85,7 @@ class Table(OrderedDict):
value: The value to set.
"""
key = get_string_id(key)
OrderedDict.__setitem__(self, key, value)
OrderedDict.__setitem__(self, key, value) # type:ignore[assignment]
self.bloom.add(key)
def set(self, key: Union[str, int], value: Any) -> None:
@ -104,7 +104,7 @@ class Table(OrderedDict):
RETURNS: The value.
"""
key = get_string_id(key)
return OrderedDict.__getitem__(self, key)
return OrderedDict.__getitem__(self, key) # type:ignore[index]
def get(self, key: Union[str, int], default: Optional[Any] = None) -> Any:
"""Get the value for a given key. String keys will be hashed.
@ -114,7 +114,7 @@ class Table(OrderedDict):
RETURNS: The value.
"""
key = get_string_id(key)
return OrderedDict.get(self, key, default)
return OrderedDict.get(self, key, default) # type:ignore[arg-type]
def __contains__(self, key: Union[str, int]) -> bool: # type: ignore[override]
"""Check whether a key is in the table. String keys will be hashed.

View File

@ -690,18 +690,14 @@ cdef int8_t get_is_match(PatternStateC state,
return True
cdef int8_t get_is_final(PatternStateC state) nogil:
cdef inline int8_t get_is_final(PatternStateC state) nogil:
if state.pattern[1].quantifier == FINAL_ID:
id_attr = state.pattern[1].attrs[0]
if id_attr.attr != ID:
with gil:
raise ValueError(Errors.E074.format(attr=ID, bad_attr=id_attr.attr))
return 1
else:
return 0
cdef int8_t get_quantifier(PatternStateC state) nogil:
cdef inline int8_t get_quantifier(PatternStateC state) nogil:
return state.pattern.quantifier
@ -790,6 +786,7 @@ def _preprocess_pattern(token_specs, vocab, extensions_table, extra_predicates):
def _get_attr_values(spec, string_store):
attr_values = []
for attr, value in spec.items():
input_attr = attr
if isinstance(attr, str):
attr = attr.upper()
if attr == '_':
@ -818,7 +815,7 @@ def _get_attr_values(spec, string_store):
attr_values.append((attr, value))
else:
# should be caught in validation
raise ValueError(Errors.E152.format(attr=attr))
raise ValueError(Errors.E152.format(attr=input_attr))
return attr_values

View File

@ -118,6 +118,8 @@ cdef class PhraseMatcher:
# if token is not found, break out of the loop
current_node = NULL
break
path_nodes.push_back(current_node)
path_keys.push_back(self._terminal_hash)
# remove the tokens from trie node if there are no other
# keywords with them
result = map_get(current_node, self._terminal_hash)

View File

@ -23,7 +23,7 @@ def build_nel_encoder(
((tok2vec >> list2ragged()) & build_span_maker())
>> extract_spans()
>> reduce_mean()
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0)) # type: ignore[arg-type]
>> residual(Maxout(nO=token_width, nI=token_width, nP=2, dropout=0.0))
>> output_layer
)
model.set_ref("output_layer", output_layer)

View File

@ -72,7 +72,7 @@ def build_tb_parser_model(
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None
tok2vec = chain(
tok2vec,
cast(Model[List["Floats2d"], Floats2d], list2array()),
list2array(),
Linear(hidden_width, t2v_width),
)
tok2vec.set_dim("nO", hidden_width)

View File

@ -1,5 +1,5 @@
from typing import Optional, List, cast
from functools import partial
from typing import Optional, List
from thinc.types import Floats2d
from thinc.api import Model, reduce_mean, Linear, list2ragged, Logistic
@ -59,7 +59,8 @@ def build_simple_cnn_text_classifier(
resizable_layer=resizable_layer,
)
model.set_ref("tok2vec", tok2vec)
model.set_dim("nO", nO) # type: ignore # TODO: remove type ignore once Thinc has been updated
if nO is not None:
model.set_dim("nO", cast(int, nO))
model.attrs["multi_label"] = not exclusive_classes
return model
@ -85,7 +86,7 @@ def build_bow_text_classifier(
if not no_output_layer:
fill_defaults["b"] = NEG_VALUE
output_layer = softmax_activation() if exclusive_classes else Logistic()
resizable_layer = resizable( # type: ignore[var-annotated]
resizable_layer: Model[Floats2d, Floats2d] = resizable(
sparse_linear,
resize_layer=partial(resize_linear_weighted, fill_defaults=fill_defaults),
)
@ -93,7 +94,8 @@ def build_bow_text_classifier(
model = with_cpu(model, model.ops)
if output_layer:
model = model >> with_cpu(output_layer, output_layer.ops)
model.set_dim("nO", nO) # type: ignore[arg-type]
if nO is not None:
model.set_dim("nO", cast(int, nO))
model.set_ref("output_layer", sparse_linear)
model.attrs["multi_label"] = not exclusive_classes
model.attrs["resize_output"] = partial(
@ -129,8 +131,8 @@ def build_text_classifier_v2(
output_layer = Linear(nO=nO, nI=nO_double) >> Logistic()
model = (linear_model | cnn_model) >> output_layer
model.set_ref("tok2vec", tok2vec)
if model.has_dim("nO") is not False:
model.set_dim("nO", nO) # type: ignore[arg-type]
if model.has_dim("nO") is not False and nO is not None:
model.set_dim("nO", cast(int, nO))
model.set_ref("output_layer", linear_model.get_ref("output_layer"))
model.set_ref("attention_layer", attention_layer)
model.set_ref("maxout_layer", maxout_layer)
@ -164,7 +166,7 @@ def build_text_classifier_lowdata(
>> list2ragged()
>> ParametricAttention(width)
>> reduce_sum()
>> residual(Relu(width, width)) ** 2 # type: ignore[arg-type]
>> residual(Relu(width, width)) ** 2
>> Linear(nO, width)
)
if dropout:

View File

@ -1,5 +1,5 @@
from typing import Optional, List, Union, cast
from thinc.types import Floats2d, Ints2d, Ragged
from thinc.types import Floats2d, Ints2d, Ragged, Ints1d
from thinc.api import chain, clone, concatenate, with_array, with_padded
from thinc.api import Model, noop, list2ragged, ragged2list, HashEmbed
from thinc.api import expand_window, residual, Maxout, Mish, PyTorchLSTM
@ -159,7 +159,7 @@ def MultiHashEmbed(
embeddings = [make_hash_embed(i) for i in range(len(attrs))]
concat_size = width * (len(embeddings) + include_static_vectors)
max_out: Model[Ragged, Ragged] = with_array(
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True) # type: ignore
Maxout(width, concat_size, nP=3, dropout=0.0, normalize=True)
)
if include_static_vectors:
feature_extractor: Model[List[Doc], Ragged] = chain(
@ -173,7 +173,7 @@ def MultiHashEmbed(
StaticVectors(width, dropout=0.0),
),
max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()),
ragged2list(),
)
else:
model = chain(
@ -181,7 +181,7 @@ def MultiHashEmbed(
cast(Model[List[Ints2d], Ragged], list2ragged()),
with_array(concatenate(*embeddings)),
max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()),
ragged2list(),
)
return model
@ -232,12 +232,12 @@ def CharacterEmbed(
feature_extractor: Model[List[Doc], Ragged] = chain(
FeatureExtractor([feature]),
cast(Model[List[Ints2d], Ragged], list2ragged()),
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore
with_array(HashEmbed(nO=width, nV=rows, column=0, seed=5)), # type: ignore[misc]
)
max_out: Model[Ragged, Ragged]
if include_static_vectors:
max_out = with_array(
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0) # type: ignore
Maxout(width, nM * nC + (2 * width), nP=3, normalize=True, dropout=0.0)
)
model = chain(
concatenate(
@ -246,11 +246,11 @@ def CharacterEmbed(
StaticVectors(width, dropout=0.0),
),
max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()),
ragged2list(),
)
else:
max_out = with_array(
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0) # type: ignore
Maxout(width, nM * nC + width, nP=3, normalize=True, dropout=0.0)
)
model = chain(
concatenate(
@ -258,7 +258,7 @@ def CharacterEmbed(
feature_extractor,
),
max_out,
cast(Model[Ragged, List[Floats2d]], ragged2list()),
ragged2list(),
)
return model
@ -289,10 +289,10 @@ def MaxoutWindowEncoder(
normalize=True,
),
)
model = clone(residual(cnn), depth) # type: ignore[arg-type]
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
receptive_field = window_size * depth
return with_array(model, pad=receptive_field) # type: ignore[arg-type]
return with_array(model, pad=receptive_field)
@registry.architectures("spacy.MishWindowEncoder.v2")
@ -313,9 +313,9 @@ def MishWindowEncoder(
expand_window(window_size=window_size),
Mish(nO=width, nI=width * ((window_size * 2) + 1), dropout=0.0, normalize=True),
)
model = clone(residual(cnn), depth) # type: ignore[arg-type]
model = clone(residual(cnn), depth)
model.set_dim("nO", width)
return with_array(model) # type: ignore[arg-type]
return with_array(model)
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")

View File

@ -11,6 +11,7 @@ import numpy.random
from thinc.api import Model, CupyOps, NumpyOps
from .. import util
from ..errors import Errors
from ..typedefs cimport weight_t, class_t, hash_t
from ..pipeline._parser_internals.stateclass cimport StateClass
@ -411,7 +412,7 @@ cdef class precompute_hiddens:
elif name == "nO":
return self.nO
else:
raise ValueError(f"Dimension {name} invalid -- only nO, nF, nP")
raise ValueError(Errors.E1033.format(name=name))
def set_dim(self, name, value):
if name == "nF":
@ -421,7 +422,7 @@ cdef class precompute_hiddens:
elif name == "nO":
self.nO = value
else:
raise ValueError(f"Dimension {name} invalid -- only nO, nF, nP")
raise ValueError(Errors.E1033.format(name=name))
def __call__(self, X, bint is_train):
if is_train:

View File

@ -40,17 +40,15 @@ def forward(
if not token_count:
return _handle_empty(model.ops, model.get_dim("nO"))
key_attr: int = model.attrs["key_attr"]
keys: Ints1d = model.ops.flatten(
cast(Sequence, [doc.to_array(key_attr) for doc in docs])
)
keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs])
vocab: Vocab = docs[0].vocab
W = cast(Floats2d, model.ops.as_contig(model.get_param("W")))
if vocab.vectors.mode == Mode.default:
V = cast(Floats2d, model.ops.asarray(vocab.vectors.data))
V = model.ops.asarray(vocab.vectors.data)
rows = vocab.vectors.find(keys=keys)
V = model.ops.as_contig(V[rows])
elif vocab.vectors.mode == Mode.floret:
V = cast(Floats2d, vocab.vectors.get_batch(keys))
V = vocab.vectors.get_batch(keys)
V = model.ops.as_contig(V)
else:
raise RuntimeError(Errors.E896)
@ -62,9 +60,7 @@ def forward(
# Convert negative indices to 0-vectors
# TODO: more options for UNK tokens
vectors_data[rows < 0] = 0
output = Ragged(
vectors_data, model.ops.asarray([len(doc) for doc in docs], dtype="i") # type: ignore
)
output = Ragged(vectors_data, model.ops.asarray1i([len(doc) for doc in docs]))
mask = None
if is_train:
mask = _get_drop_mask(model.ops, W.shape[0], model.attrs.get("dropout_rate"))
@ -77,7 +73,9 @@ def forward(
model.inc_grad(
"W",
model.ops.gemm(
cast(Floats2d, d_output.data), model.ops.as_contig(V), trans1=True
cast(Floats2d, d_output.data),
cast(Floats2d, model.ops.as_contig(V)),
trans1=True,
),
)
return []

View File

@ -132,7 +132,7 @@ cdef class EditTrees:
could not be applied to the form.
"""
if tree_id >= self.trees.size():
raise IndexError("Edit tree identifier out of range")
raise IndexError(Errors.E1030)
lemma_pieces = []
try:
@ -154,7 +154,7 @@ cdef class EditTrees:
match_node = tree.inner.match_node
if match_node.prefix_len + match_node.suffix_len > len(form_part):
raise ValueError("Edit tree cannot be applied to form")
raise ValueError(Errors.E1029)
suffix_start = len(form_part) - match_node.suffix_len
@ -169,7 +169,7 @@ cdef class EditTrees:
if form_part == self.strings[tree.inner.subst_node.orig]:
lemma_pieces.append(self.strings[tree.inner.subst_node.subst])
else:
raise ValueError("Edit tree cannot be applied to form")
raise ValueError(Errors.E1029)
cpdef unicode tree_to_str(self, uint32_t tree_id):
"""Return the tree as a string. The tree tree string is formatted
@ -187,7 +187,7 @@ cdef class EditTrees:
"""
if tree_id >= self.trees.size():
raise IndexError("Edit tree identifier out of range")
raise IndexError(Errors.E1030)
cdef EditTreeC tree = self.trees[tree_id]
cdef SubstNodeC subst_node

View File

@ -824,7 +824,7 @@ cdef class ArcEager(TransitionSystem):
for i in range(self.n_moves):
print(self.get_class_name(i), is_valid[i], costs[i])
print("Gold sent starts?", is_sent_start(&gold_state, state.B(0)), is_sent_start(&gold_state, state.B(1)))
raise ValueError("Could not find gold transition - see logs above.")
raise ValueError(Errors.E1031)
def get_oracle_sequence_from_state(self, StateClass state, ArcEagerGold gold, _debug=None):
cdef int i

View File

@ -138,7 +138,7 @@ class EditTreeLemmatizer(TrainablePipe):
truths.append(eg_truths)
d_scores, loss = loss_func(scores, truths) # type: ignore
d_scores, loss = loss_func(scores, truths)
if self.model.ops.xp.isnan(loss):
raise ValueError(Errors.E910.format(name=self.name))

View File

@ -234,10 +234,11 @@ class EntityLinker(TrainablePipe):
nO = self.kb.entity_vector_length
doc_sample = []
vector_sample = []
for example in islice(get_examples(), 10):
doc = example.x
for eg in islice(get_examples(), 10):
doc = eg.x
if self.use_gold_ents:
doc.ents = example.y.ents
ents, _ = eg.get_aligned_ents_and_ner()
doc.ents = ents
doc_sample.append(doc)
vector_sample.append(self.model.ops.alloc1f(nO))
assert len(doc_sample) > 0, Errors.E923.format(name=self.name)
@ -312,7 +313,8 @@ class EntityLinker(TrainablePipe):
for doc, ex in zip(docs, examples):
if self.use_gold_ents:
doc.ents = ex.reference.ents
ents, _ = ex.get_aligned_ents_and_ner()
doc.ents = ents
else:
# only keep matching ents
doc.ents = ex.get_matching_ents()
@ -345,7 +347,7 @@ class EntityLinker(TrainablePipe):
for eg in examples:
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
for ent in eg.reference.ents:
for ent in eg.get_matching_ents():
kb_id = kb_ids[ent.start]
if kb_id:
entity_encoding = self.kb.get_vector(kb_id)
@ -356,7 +358,11 @@ class EntityLinker(TrainablePipe):
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
selected_encodings = sentence_encodings[keep_ents]
# If the entity encodings list is empty, then
# if there are no matches, short circuit
if not keep_ents:
out = self.model.ops.alloc2f(*sentence_encodings.shape)
return 0, out
if selected_encodings.shape != entity_encodings.shape:
err = Errors.E147.format(
method="get_loss", msg="gold entities do not match up"

View File

@ -158,10 +158,8 @@ class EntityRuler(Pipe):
self._require_patterns()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036")
matches = cast(
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
matches = list(self.matcher(doc)) + list(self.phrase_matcher(doc))
final_matches = set(
[(m_id, start, end) for m_id, start, end in matches if start != end]
)

View File

@ -213,15 +213,14 @@ class EntityLinker_v1(TrainablePipe):
if kb_id:
entity_encoding = self.kb.get_vector(kb_id)
entity_encodings.append(entity_encoding)
entity_encodings = self.model.ops.asarray(entity_encodings, dtype="float32")
entity_encodings = self.model.ops.asarray2f(entity_encodings)
if sentence_encodings.shape != entity_encodings.shape:
err = Errors.E147.format(
method="get_loss", msg="gold entities do not match up"
)
raise RuntimeError(err)
# TODO: fix typing issue here
gradients = self.distance.get_grad(sentence_encodings, entity_encodings) # type: ignore
loss = self.distance.get_loss(sentence_encodings, entity_encodings) # type: ignore
gradients = self.distance.get_grad(sentence_encodings, entity_encodings)
loss = self.distance.get_loss(sentence_encodings, entity_encodings)
loss = loss / len(entity_encodings)
return float(loss), gradients

View File

@ -75,7 +75,7 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
if spans:
assert spans[-1].ndim == 2, spans[-1].shape
lengths.append(length)
lengths_array = cast(Ints1d, ops.asarray(lengths, dtype="i"))
lengths_array = ops.asarray1i(lengths)
if len(spans) > 0:
output = Ragged(ops.xp.vstack(spans), lengths_array)
else:

View File

@ -104,7 +104,7 @@ def get_arg_model(
sig_args[param.name] = (annotation, default)
is_strict = strict and not has_variable
sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra # type: ignore[assignment]
return create_model(name, **sig_args) # type: ignore[arg-type, return-value]
return create_model(name, **sig_args) # type: ignore[call-overload, arg-type, return-value]
def validate_init_settings(

View File

@ -1,4 +1,4 @@
from typing import Optional, Iterable, Iterator, Union, Any
from typing import Optional, Iterable, Iterator, Union, Any, overload
from pathlib import Path
def get_string_id(key: Union[str, int]) -> int: ...
@ -7,7 +7,10 @@ class StringStore:
def __init__(
self, strings: Optional[Iterable[str]] = ..., freeze: bool = ...
) -> None: ...
def __getitem__(self, string_or_id: Union[bytes, str, int]) -> Union[str, int]: ...
@overload
def __getitem__(self, string_or_id: Union[bytes, str]) -> int: ...
@overload
def __getitem__(self, string_or_id: int) -> str: ...
def as_int(self, key: Union[bytes, str, int]) -> int: ...
def as_string(self, key: Union[bytes, str, int]) -> str: ...
def add(self, string: str) -> int: ...

View File

@ -1,6 +1,7 @@
import weakref
import numpy
from numpy.testing import assert_array_equal
import pytest
from thinc.api import NumpyOps, get_current_ops
@ -10,7 +11,7 @@ from spacy.lang.en import English
from spacy.lang.xx import MultiLanguage
from spacy.language import Language
from spacy.lexeme import Lexeme
from spacy.tokens import Doc, Span, Token
from spacy.tokens import Doc, Span, SpanGroup, Token
from spacy.vocab import Vocab
from .test_underscore import clean_underscore # noqa: F401
@ -634,6 +635,14 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert "group" in m_doc.spans
assert span_group_texts == sorted([s.text for s in m_doc.spans["group"]])
# can exclude spans
m_doc = Doc.from_docs(en_docs, exclude=["spans"])
assert "group" not in m_doc.spans
# can exclude user_data
m_doc = Doc.from_docs(en_docs, exclude=["user_data"])
assert m_doc.user_data == {}
# can merge empty docs
doc = Doc.from_docs([en_tokenizer("")] * 10)
@ -647,6 +656,20 @@ def test_doc_api_from_docs(en_tokenizer, de_tokenizer):
assert "group" in m_doc.spans
assert len(m_doc.spans["group"]) == 0
# with tensor
ops = get_current_ops()
for doc in en_docs:
doc.tensor = ops.asarray([[len(t.text), 0.0] for t in doc])
m_doc = Doc.from_docs(en_docs)
assert_array_equal(
ops.to_numpy(m_doc.tensor),
ops.to_numpy(ops.xp.vstack([doc.tensor for doc in en_docs if len(doc)])),
)
# can exclude tensor
m_doc = Doc.from_docs(en_docs, exclude=["tensor"])
assert m_doc.tensor.shape == (0,)
def test_doc_api_from_docs_ents(en_tokenizer):
texts = ["Merging the docs is fun.", "They don't think alike."]
@ -941,3 +964,13 @@ def test_doc_spans_copy(en_tokenizer):
assert weakref.ref(doc1) == doc1.spans.doc_ref
doc2 = doc1.copy()
assert weakref.ref(doc2) == doc2.spans.doc_ref
def test_doc_spans_setdefault(en_tokenizer):
doc = en_tokenizer("Some text about Colombia and the Czech Republic")
doc.spans.setdefault("key1")
assert len(doc.spans["key1"]) == 0
doc.spans.setdefault("key2", default=[doc[0:1]])
assert len(doc.spans["key2"]) == 1
doc.spans.setdefault("key3", default=SpanGroup(doc, spans=[doc[0:1], doc[1:2]]))
assert len(doc.spans["key3"]) == 2

View File

@ -694,5 +694,4 @@ TESTS = ABBREV_TESTS + URL_TESTS + NUMBER_TESTS + PUNCT_TESTS + GENERAL_TESTS
def test_tr_tokenizer_handles_allcases(tr_tokenizer, text, expected_tokens):
tokens = tr_tokenizer(text)
token_list = [token.text for token in tokens if not token.is_space]
print(token_list)
assert expected_tokens == token_list

View File

@ -122,6 +122,36 @@ def test_issue6839(en_vocab):
assert matches
@pytest.mark.issue(10643)
def test_issue10643(en_vocab):
"""Ensure overlapping terms can be removed from PhraseMatcher"""
# fmt: off
words = ["Only", "save", "out", "the", "binary", "data", "for", "the", "individual", "components", "."]
# fmt: on
doc = Doc(en_vocab, words=words)
terms = {
"0": Doc(en_vocab, words=["binary"]),
"1": Doc(en_vocab, words=["binary", "data"]),
}
matcher = PhraseMatcher(en_vocab)
for match_id, term in terms.items():
matcher.add(match_id, [term])
matches = matcher(doc)
assert matches == [(en_vocab.strings["0"], 4, 5), (en_vocab.strings["1"], 4, 6)]
matcher.remove("0")
assert len(matcher) == 1
new_matches = matcher(doc)
assert new_matches == [(en_vocab.strings["1"], 4, 6)]
matcher.remove("1")
assert len(matcher) == 0
no_matches = matcher(doc)
assert not no_matches
def test_matcher_phrase_matcher(en_vocab):
doc = Doc(en_vocab, words=["I", "like", "Google", "Now", "best"])
# intermediate phrase

View File

@ -12,6 +12,7 @@ from spacy.vocab import Vocab
from ...pipeline import DependencyParser
from ...pipeline.dep_parser import DEFAULT_PARSER_MODEL
from ..util import apply_transition_sequence, make_tempdir
from ...pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
TRAIN_DATA = [
(
@ -395,6 +396,34 @@ def test_overfitting_IO(pipe_name):
assert_equal(batch_deps_1, no_batch_deps)
# fmt: off
@pytest.mark.slow
@pytest.mark.parametrize("pipe_name", ["parser", "beam_parser"])
@pytest.mark.parametrize(
"parser_config",
[
# TransitionBasedParser V1
({"@architectures": "spacy.TransitionBasedParser.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
# TransitionBasedParser V2
({"@architectures": "spacy.TransitionBasedParser.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "state_type": "parser", "extra_state_tokens": False, "hidden_width": 64, "maxout_pieces": 2, "use_upper": True}),
],
)
# fmt: on
def test_parser_configs(pipe_name, parser_config):
pipe_config = {"model": parser_config}
nlp = English()
parser = nlp.add_pipe(pipe_name, config=pipe_config)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
for dep in annotations.get("deps", []):
parser.add_label(dep)
optimizer = nlp.initialize()
for i in range(5):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
def test_beam_parser_scores():
# Test that we can get confidence values out of the beam_parser pipe
beam_width = 16

View File

@ -14,7 +14,7 @@ from spacy.pipeline.legacy import EntityLinker_v1
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from spacy.scorer import Scorer
from spacy.tests.util import make_tempdir
from spacy.tokens import Span
from spacy.tokens import Span, Doc
from spacy.training import Example
from spacy.util import ensure_path
from spacy.vocab import Vocab
@ -1075,3 +1075,32 @@ def test_no_gold_ents(patterns):
# this will run the pipeline on the examples and shouldn't crash
results = nlp.evaluate(train_examples)
@pytest.mark.issue(9575)
def test_tokenization_mismatch():
nlp = English()
# include a matching entity so that update isn't skipped
doc1 = Doc(nlp.vocab, words=["Kirby", "123456"], spaces=[True, False], ents=["B-CHARACTER", "B-CARDINAL"])
doc2 = Doc(nlp.vocab, words=["Kirby", "123", "456"], spaces=[True, False, False], ents=["B-CHARACTER", "B-CARDINAL", "B-CARDINAL"])
eg = Example(doc1, doc2)
train_examples = [eg]
vector_length = 3
def create_kb(vocab):
# create placeholder KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9])
return mykb
entity_linker = nlp.add_pipe("entity_linker", last=True)
entity_linker.set_kb(create_kb)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
nlp.add_pipe("sentencizer", first=True)
results = nlp.evaluate(train_examples)

View File

@ -184,7 +184,7 @@ def test_overfitting_IO():
token.pos_ = ""
token.set_morph(None)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
print(nlp.get_pipe("morphologizer").labels)
assert nlp.get_pipe("morphologizer").labels is not None
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)

View File

@ -119,6 +119,7 @@ def test_pipe_class_component_config():
self.value1 = value1
self.value2 = value2
self.is_base = True
self.name = name
def __call__(self, doc: Doc) -> Doc:
return doc
@ -141,12 +142,16 @@ def test_pipe_class_component_config():
nlp.add_pipe(name)
with pytest.raises(ConfigValidationError): # invalid config
nlp.add_pipe(name, config={"value1": "10", "value2": "hello"})
nlp.add_pipe(name, config={"value1": 10, "value2": "hello"})
with pytest.warns(UserWarning):
nlp.add_pipe(
name, config={"value1": 10, "value2": "hello", "name": "wrong_name"}
)
pipe = nlp.get_pipe(name)
assert isinstance(pipe.nlp, Language)
assert pipe.value1 == 10
assert pipe.value2 == "hello"
assert pipe.is_base is True
assert pipe.name == name
nlp_en = English()
with pytest.raises(ConfigValidationError): # invalid config

View File

@ -382,6 +382,7 @@ def test_implicit_label(name, get_examples):
# fmt: off
@pytest.mark.slow
@pytest.mark.parametrize(
"name,textcat_config",
[
@ -390,7 +391,10 @@ def test_implicit_label(name, get_examples):
("textcat", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}),
("textcat_multilabel", {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": True, "ngram_size": 3}),
# ENSEMBLE
# ENSEMBLE V1
("textcat", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
# ENSEMBLE V2
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": False, "ngram_size": 3}}),
("textcat", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "no_output_layer": True, "ngram_size": 3}}),
("textcat_multilabel", {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "no_output_layer": False, "ngram_size": 3}}),
@ -643,15 +647,28 @@ def test_overfitting_IO_multi():
# fmt: off
@pytest.mark.slow
@pytest.mark.parametrize(
"name,train_data,textcat_config",
[
# BOW V1
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v1", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
# ENSEMBLE V1
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v1", "exclusive_classes": False, "pretrained_vectors": None, "width": 64, "embed_size": 2000, "conv_depth": 2, "window_size": 1, "ngram_size": 1, "dropout": None}),
# CNN V1
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v1", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
# BOW V2
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 4, "no_output_layer": False}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 3, "no_output_layer": True}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 2, "no_output_layer": True}),
# ENSEMBLE V2
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": False, "ngram_size": 1, "no_output_layer": False}}),
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatEnsemble.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "linear_model": {"@architectures": "spacy.TextCatBOW.v2", "exclusive_classes": True, "ngram_size": 5, "no_output_layer": False}}),
# CNN V2
("textcat", TRAIN_DATA_SINGLE_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": True}),
("textcat_multilabel", TRAIN_DATA_MULTI_LABEL, {"@architectures": "spacy.TextCatCNN.v2", "tok2vec": DEFAULT_TOK2VEC_MODEL, "exclusive_classes": False}),
],

View File

@ -1,13 +1,13 @@
import pytest
from spacy.ml.models.tok2vec import build_Tok2Vec_model
from spacy.ml.models.tok2vec import MultiHashEmbed, CharacterEmbed
from spacy.ml.models.tok2vec import MishWindowEncoder, MaxoutWindowEncoder
from spacy.ml.models.tok2vec import MultiHashEmbed, MaxoutWindowEncoder
from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener
from spacy.vocab import Vocab
from spacy.tokens import Doc
from spacy.training import Example
from spacy import util
from spacy.lang.en import English
from spacy.util import registry
from thinc.api import Config, get_current_ops
from numpy.testing import assert_array_equal
@ -55,24 +55,41 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size):
assert doc_vec.shape == (len(doc), width)
@pytest.mark.slow
@pytest.mark.parametrize("width", [8])
@pytest.mark.parametrize(
"width,embed_arch,embed_config,encode_arch,encode_config",
"embed_arch,embed_config",
# fmt: off
[
(8, MultiHashEmbed, {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
(8, MultiHashEmbed, {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}),
(8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}),
(8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}),
("spacy.MultiHashEmbed.v1", {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}),
("spacy.MultiHashEmbed.v1", {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}),
("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}),
("spacy.CharacterEmbed.v1", {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}),
],
# fmt: on
)
def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_config):
@pytest.mark.parametrize(
"tok2vec_arch,encode_arch,encode_config",
# fmt: off
[
("spacy.Tok2Vec.v1", "spacy.MaxoutWindowEncoder.v1", {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
("spacy.Tok2Vec.v2", "spacy.MaxoutWindowEncoder.v2", {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
("spacy.Tok2Vec.v1", "spacy.MishWindowEncoder.v1", {"window_size": 1, "depth": 6}),
("spacy.Tok2Vec.v2", "spacy.MishWindowEncoder.v2", {"window_size": 1, "depth": 6}),
],
# fmt: on
)
def test_tok2vec_configs(
width, tok2vec_arch, embed_arch, embed_config, encode_arch, encode_config
):
embed = registry.get("architectures", embed_arch)
encode = registry.get("architectures", encode_arch)
tok2vec_model = registry.get("architectures", tok2vec_arch)
embed_config["width"] = width
encode_config["width"] = width
docs = get_batch(3)
tok2vec = build_Tok2Vec_model(
embed_arch(**embed_config), encode_arch(**encode_config)
)
tok2vec = tok2vec_model(embed(**embed_config), encode(**encode_config))
tok2vec.initialize(docs)
vectors, backprop = tok2vec.begin_update(docs)
assert len(vectors) == len(docs)

View File

@ -1,4 +1,7 @@
import os
import math
from random import sample
from typing import Counter
import pytest
import srsly
@ -14,6 +17,10 @@ from spacy.cli._util import substitute_project_variables
from spacy.cli._util import validate_project_commands
from spacy.cli.debug_data import _compile_gold, _get_labels_from_model
from spacy.cli.debug_data import _get_labels_from_spancat
from spacy.cli.debug_data import _get_distribution, _get_kl_divergence
from spacy.cli.debug_data import _get_span_characteristics
from spacy.cli.debug_data import _print_span_characteristics
from spacy.cli.debug_data import _get_spans_length_freq_dist
from spacy.cli.download import get_compatibility, get_version
from spacy.cli.init_config import RECOMMENDATIONS, init_config, fill_config
from spacy.cli.package import get_third_party_dependencies
@ -24,6 +31,7 @@ from spacy.lang.nl import Dutch
from spacy.language import Language
from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate
from spacy.tokens import Doc
from spacy.tokens.span import Span
from spacy.training import Example, docs_to_json, offsets_to_biluo_tags
from spacy.training.converters import conll_ner_to_docs, conllu_to_docs
from spacy.training.converters import iob_to_docs
@ -217,7 +225,6 @@ def test_cli_converters_conllu_to_docs_subtokens():
sent = converted[0]["paragraphs"][0]["sentences"][0]
assert len(sent["tokens"]) == 4
tokens = sent["tokens"]
print(tokens)
assert [t["orth"] for t in tokens] == ["Dommer", "FE", "avstår", "."]
assert [t["tag"] for t in tokens] == [
"NOUN__Definite=Ind|Gender=Masc|Number=Sing",
@ -342,6 +349,7 @@ def test_project_config_validation_full():
"assets": [
{
"dest": "x",
"extra": True,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
@ -353,6 +361,12 @@ def test_project_config_validation_full():
"path": "y",
},
},
{
"dest": "z",
"extra": False,
"url": "https://example.com",
"checksum": "63373dd656daa1fd3043ce166a59474c",
},
],
"commands": [
{
@ -585,7 +599,6 @@ def test_download_compatibility():
assert get_minor_version(about.__version__) == get_minor_version(version)
@pytest.mark.skip(reason="Temporarily skip for dev version")
def test_validate_compatibility_table():
spec = SpecifierSet("==" + about.__version__)
spec.prereleases = False
@ -735,3 +748,110 @@ def test_debug_data_compile_gold():
eg = Example(pred, ref)
data = _compile_gold([eg], ["ner"], nlp, True)
assert data["boundary_cross_ents"] == 1
def test_debug_data_compile_gold_for_spans():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
data = _compile_gold([eg], ["spancat"], nlp, True)
assert data["spancat"][spans_key] == Counter({"ORG": 1, "GPE": 1})
assert data["spans_length"][spans_key] == {"ORG": [3], "GPE": [1]}
assert data["spans_per_type"][spans_key] == {
"ORG": [Span(ref, 3, 6, "ORG")],
"GPE": [Span(ref, 5, 6, "GPE")],
}
assert data["sb_per_type"][spans_key] == {
"ORG": {"start": [ref[2:3]], "end": [ref[6:7]]},
"GPE": {"start": [ref[4:5]], "end": [ref[6:7]]},
}
def test_frequency_distribution_is_correct():
nlp = English()
docs = [
Doc(nlp.vocab, words=["Bank", "of", "China"]),
Doc(nlp.vocab, words=["China"]),
]
expected = Counter({"china": 0.5, "bank": 0.25, "of": 0.25})
freq_distribution = _get_distribution(docs, normalize=True)
assert freq_distribution == expected
def test_kl_divergence_computation_is_correct():
p = Counter({"a": 0.5, "b": 0.25})
q = Counter({"a": 0.25, "b": 0.50, "c": 0.15, "d": 0.10})
result = _get_kl_divergence(p, q)
expected = 0.1733
assert math.isclose(result, expected, rel_tol=1e-3)
def test_get_span_characteristics_return_value():
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
assert {"sd", "bd", "lengths"}.issubset(span_characteristics.keys())
assert span_characteristics["min_length"] == 1
assert span_characteristics["max_length"] == 3
def test_ensure_print_span_characteristics_wont_fail():
"""Test if interface between two methods aren't destroyed if refactored"""
nlp = English()
spans_key = "sc"
pred = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
pred.spans[spans_key] = [Span(pred, 3, 6, "ORG"), Span(pred, 5, 6, "GPE")]
ref = Doc(nlp.vocab, words=["Welcome", "to", "the", "Bank", "of", "China", "."])
ref.spans[spans_key] = [Span(ref, 3, 6, "ORG"), Span(ref, 5, 6, "GPE")]
eg = Example(pred, ref)
examples = [eg]
data = _compile_gold(examples, ["spancat"], nlp, True)
span_characteristics = _get_span_characteristics(
examples=examples, compiled_gold=data, spans_key=spans_key
)
_print_span_characteristics(span_characteristics)
@pytest.mark.parametrize("threshold", [70, 80, 85, 90, 95])
def test_span_length_freq_dist_threshold_must_be_correct(threshold):
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
def test_span_length_freq_dist_output_must_be_correct():
sample_span_lengths = {
"span_type_1": [1, 4, 4, 5],
"span_type_2": [5, 3, 3, 2],
"span_type_3": [3, 1, 3, 3],
}
threshold = 90
span_freqs = _get_spans_length_freq_dist(sample_span_lengths, threshold)
assert sum(span_freqs.values()) >= threshold
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]

View File

@ -338,3 +338,18 @@ def test_displacy_options_case():
assert "green" in result[1] and "bar" in result[1]
assert "red" in result[2] and "FOO" in result[2]
assert "green" in result[3] and "BAR" in result[3]
@pytest.mark.issue(10672)
def test_displacy_manual_sorted_entities():
doc = {
"text": "But Google is starting from behind.",
"ents": [
{"start": 14, "end": 22, "label": "SECOND"},
{"start": 4, "end": 10, "label": "FIRST"},
],
"title": None,
}
html = displacy.render(doc, style="ent", manual=True)
assert html.find("FIRST") < html.find("SECOND")

View File

@ -1,7 +1,13 @@
import pytest
import re
from spacy.util import get_lang_class
import string
import hypothesis
import hypothesis.strategies
import pytest
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import get_lang_class
# Only include languages with no external dependencies
# "is" seems to confuse importlib, so we're also excluding it for now
@ -77,3 +83,46 @@ def test_tokenizer_explain_special_matcher(en_vocab):
tokens = [t.text for t in tokenizer("a/a.")]
explain_tokens = [t[1] for t in tokenizer.explain("a/a.")]
assert tokens == explain_tokens
@hypothesis.strategies.composite
def sentence_strategy(draw: hypothesis.strategies.DrawFn, max_n_words: int = 4) -> str:
"""
Composite strategy for fuzzily generating sentence with varying interpunctation.
draw (hypothesis.strategies.DrawFn): Protocol for drawing function allowing to fuzzily pick from hypothesis'
strategies.
max_n_words (int): Max. number of words in generated sentence.
RETURNS (str): Fuzzily generated sentence.
"""
punctuation_and_space_regex = "|".join(
[*[re.escape(p) for p in string.punctuation], r"\s"]
)
sentence = [
[
draw(hypothesis.strategies.text(min_size=1)),
draw(hypothesis.strategies.from_regex(punctuation_and_space_regex)),
]
for _ in range(
draw(hypothesis.strategies.integers(min_value=2, max_value=max_n_words))
)
]
return " ".join([token for token_pair in sentence for token in token_pair])
@pytest.mark.xfail
@pytest.mark.parametrize("lang", LANGUAGES)
@hypothesis.given(sentence=sentence_strategy())
def test_tokenizer_explain_fuzzy(lang: str, sentence: str) -> None:
"""
Tests whether output of tokenizer.explain() matches tokenizer output. Input generated by hypothesis.
lang (str): Language to test.
text (str): Fuzzily generated sentence to tokenize.
"""
tokenizer: Tokenizer = spacy.blank(lang).tokenizer
tokens = [t.text for t in tokenizer(sentence) if not t.is_space]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
assert tokens == debug_tokens, f"{tokens}, {debug_tokens}, {sentence}"

View File

@ -181,7 +181,7 @@ def _optimize(nlp, component: str, data: List, rehearse: bool):
elif component == "tagger":
_add_tagger_label(pipe, data)
elif component == "parser":
_add_tagger_label(pipe, data)
_add_parser_label(pipe, data)
elif component == "textcat_multilabel":
_add_textcat_label(pipe, data)
else:

View File

@ -43,6 +43,15 @@ class SpanGroups(UserDict):
doc = self._ensure_doc()
return SpanGroups(doc).from_bytes(self.to_bytes())
def setdefault(self, key, default=None):
if not isinstance(default, SpanGroup):
if default is None:
spans = []
else:
spans = default
default = self._make_span_group(key, spans)
return super().setdefault(key, default=default)
def to_bytes(self) -> bytes:
# We don't need to serialize this as a dict, because the groups
# know their names.

View File

@ -11,7 +11,7 @@ from enum import Enum
import itertools
import numpy
import srsly
from thinc.api import get_array_module
from thinc.api import get_array_module, get_current_ops
from thinc.util import copy_array
import warnings
@ -414,6 +414,7 @@ cdef class Doc:
"""
# empty docs are always annotated
input_attr = attr
if self.length == 0:
return True
cdef int i
@ -423,6 +424,10 @@ cdef class Doc:
elif attr == "IS_SENT_END" or attr == self.vocab.strings["IS_SENT_END"]:
attr = SENT_START
attr = intify_attr(attr)
if attr is None:
raise ValueError(
Errors.E1037.format(attr=input_attr)
)
# adjust attributes
if attr == HEAD:
# HEAD does not have an unset state, so rely on DEP
@ -1108,14 +1113,19 @@ cdef class Doc:
return self
@staticmethod
def from_docs(docs, ensure_whitespace=True, attrs=None):
def from_docs(docs, ensure_whitespace=True, attrs=None, *, exclude=tuple()):
"""Concatenate multiple Doc objects to form a new one. Raises an error
if the `Doc` objects do not all share the same `Vocab`.
docs (list): A list of Doc objects.
ensure_whitespace (bool): Insert a space between two adjacent docs whenever the first doc does not end in whitespace.
attrs (list): Optional list of attribute ID ints or attribute name strings.
RETURNS (Doc): A doc that contains the concatenated docs, or None if no docs were given.
ensure_whitespace (bool): Insert a space between two adjacent docs
whenever the first doc does not end in whitespace.
attrs (list): Optional list of attribute ID ints or attribute name
strings.
exclude (Iterable[str]): Doc attributes to exclude. Supported
attributes: `spans`, `tensor`, `user_data`.
RETURNS (Doc): A doc that contains the concatenated docs, or None if no
docs were given.
DOCS: https://spacy.io/api/doc#from_docs
"""
@ -1145,31 +1155,33 @@ cdef class Doc:
concat_words.extend(t.text for t in doc)
concat_spaces.extend(bool(t.whitespace_) for t in doc)
for key, value in doc.user_data.items():
if isinstance(key, tuple) and len(key) == 4 and key[0] == "._.":
data_type, name, start, end = key
if start is not None or end is not None:
start += char_offset
if end is not None:
end += char_offset
concat_user_data[(data_type, name, start, end)] = copy.copy(value)
if "user_data" not in exclude:
for key, value in doc.user_data.items():
if isinstance(key, tuple) and len(key) == 4 and key[0] == "._.":
data_type, name, start, end = key
if start is not None or end is not None:
start += char_offset
if end is not None:
end += char_offset
concat_user_data[(data_type, name, start, end)] = copy.copy(value)
else:
warnings.warn(Warnings.W101.format(name=name))
else:
warnings.warn(Warnings.W101.format(name=name))
else:
warnings.warn(Warnings.W102.format(key=key, value=value))
for key in doc.spans:
# if a spans key is in any doc, include it in the merged doc
# even if it is empty
if key not in concat_spans:
concat_spans[key] = []
for span in doc.spans[key]:
concat_spans[key].append((
span.start_char + char_offset,
span.end_char + char_offset,
span.label,
span.kb_id,
span.text, # included as a check
))
warnings.warn(Warnings.W102.format(key=key, value=value))
if "spans" not in exclude:
for key in doc.spans:
# if a spans key is in any doc, include it in the merged doc
# even if it is empty
if key not in concat_spans:
concat_spans[key] = []
for span in doc.spans[key]:
concat_spans[key].append((
span.start_char + char_offset,
span.end_char + char_offset,
span.label,
span.kb_id,
span.text, # included as a check
))
char_offset += len(doc.text)
if len(doc) > 0 and ensure_whitespace and not doc[-1].is_space and not bool(doc[-1].whitespace_):
char_offset += 1
@ -1210,6 +1222,10 @@ cdef class Doc:
else:
raise ValueError(Errors.E873.format(key=key, text=text))
if "tensor" not in exclude and any(len(doc) for doc in docs):
ops = get_current_ops()
concat_doc.tensor = ops.xp.vstack([ops.asarray(doc.tensor) for doc in docs if len(doc)])
return concat_doc
def get_lca_matrix(self):

View File

@ -9,6 +9,8 @@ cimport cython
import weakref
from preshed.maps cimport map_get_unless_missing
from murmurhash.mrmr cimport hash64
from .. import Errors
from ..typedefs cimport hash_t
from ..strings import get_string_id
from ..structs cimport EdgeC, GraphC
@ -68,7 +70,7 @@ cdef class Node:
"""
cdef int length = graph.c.nodes.size()
if i >= length or -i >= length:
raise IndexError(f"Node index {i} out of bounds ({length})")
raise IndexError(Errors.E1034.format(i=i, length=length))
if i < 0:
i += length
self.graph = graph
@ -88,7 +90,7 @@ cdef class Node:
"""Get a token index from the node's set of tokens."""
length = self.graph.c.nodes[self.i].size()
if i >= length or -i >= length:
raise IndexError(f"Token index {i} out of bounds ({length})")
raise IndexError(Errors.E1035.format(i=i, length=length))
if i < 0:
i += length
return self.graph.c.nodes[self.i][i]
@ -306,7 +308,7 @@ cdef class NoneNode(Node):
self.i = -1
def __getitem__(self, int i):
raise IndexError("Cannot index into NoneNode.")
raise IndexError(Errors.E1036)
def __len__(self):
return 0
@ -484,7 +486,6 @@ cdef class Graph:
for idx in indices:
node.push_back(idx)
i = add_node(&self.c, node)
print("Add node", indices, i)
return Node(self, i)
def get_node(self, indices) -> Node:
@ -501,7 +502,6 @@ cdef class Graph:
if node_index < 0:
return NoneNode(self)
else:
print("Get node", indices, node_index)
return Node(self, node_index)
def has_node(self, tuple indices) -> bool:
@ -661,8 +661,6 @@ cdef int walk_head_nodes(vector[int]& output, const GraphC* graph, int node) nog
seen.insert(node)
i = 0
while i < output.size():
with gil:
print("Walk up from", output[i])
if seen.find(output[i]) == seen.end():
seen.insert(output[i])
get_head_nodes(output, graph, output[i])

View File

@ -730,7 +730,7 @@ cdef class Span:
def __set__(self, int start):
if start < 0:
raise IndexError("TODO")
raise IndexError(Errors.E1032.format(var="start", forbidden="< 0", value=start))
self.c.start = start
property end:
@ -739,7 +739,7 @@ cdef class Span:
def __set__(self, int end):
if end < 0:
raise IndexError("TODO")
raise IndexError(Errors.E1032.format(var="end", forbidden="< 0", value=end))
self.c.end = end
property start_char:
@ -748,7 +748,7 @@ cdef class Span:
def __set__(self, int start_char):
if start_char < 0:
raise IndexError("TODO")
raise IndexError(Errors.E1032.format(var="start_char", forbidden="< 0", value=start_char))
self.c.start_char = start_char
property end_char:
@ -757,7 +757,7 @@ cdef class Span:
def __set__(self, int end_char):
if end_char < 0:
raise IndexError("TODO")
raise IndexError(Errors.E1032.format(var="end_char", forbidden="< 0", value=end_char))
self.c.end_char = end_char
property label:

View File

@ -1,4 +1,4 @@
from typing import List, Mapping, NoReturn, Union, Dict, Any, Set
from typing import List, Mapping, NoReturn, Union, Dict, Any, Set, cast
from typing import Optional, Iterable, Callable, Tuple, Type
from typing import Iterator, Type, Pattern, Generator, TYPE_CHECKING
from types import ModuleType
@ -294,7 +294,7 @@ def find_matching_language(lang: str) -> Optional[str]:
# Find out which language modules we have
possible_languages = []
for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore
for modinfo in pkgutil.iter_modules(spacy.lang.__path__): # type: ignore[attr-defined]
code = modinfo.name
if code == "xx":
# Temporarily make 'xx' into a valid language code
@ -391,7 +391,8 @@ def get_module_path(module: ModuleType) -> Path:
"""
if not hasattr(module, "__module__"):
raise ValueError(Errors.E169.format(module=repr(module)))
return Path(sys.modules[module.__module__].__file__).parent
file_path = Path(cast(os.PathLike, sys.modules[module.__module__].__file__))
return file_path.parent
def load_model(
@ -878,7 +879,7 @@ def get_package_path(name: str) -> Path:
# Here we're importing the module just to find it. This is worryingly
# indirect, but it's otherwise very difficult to find the package.
pkg = importlib.import_module(name)
return Path(pkg.__file__).parent
return Path(cast(Union[str, os.PathLike], pkg.__file__)).parent
def replace_model_node(model: Model, target: Model, replacement: Model) -> None:
@ -1675,7 +1676,7 @@ def packages_distributions() -> Dict[str, List[str]]:
it's not available in the builtin importlib.metadata.
"""
pkg_to_dist = defaultdict(list)
for dist in importlib_metadata.distributions(): # type: ignore[attr-defined]
for dist in importlib_metadata.distributions():
for pkg in (dist.read_text("top_level.txt") or "").split():
pkg_to_dist[pkg].append(dist.metadata["Name"])
return dict(pkg_to_dist)

View File

@ -466,6 +466,18 @@ takes the same arguments as `train` and reads settings off the
</Infobox>
<Infobox title="Notes on span characteristics" emoji="💡">
If your pipeline contains a `spancat` component, then this command will also
report span characteristics such as the average span length and the span (or
span boundary) distinctiveness. The distinctiveness measure shows how different
the tokens are with respect to the rest of the corpus using the KL-divergence of
the token distributions. To learn more, you can check out Papay et al.'s work on
[*Dissecting Span Identification Tasks with Performance Prediction* (EMNLP
2020)](https://aclanthology.org/2020.emnlp-main.396/).
</Infobox>
```cli
$ python -m spacy debug data [config_path] [--code] [--ignore-warnings] [--verbose] [--no-format] [overrides]
```
@ -1323,7 +1335,7 @@ $ python -m spacy project run [subcommand] [project_dir] [--force] [--dry]
| `subcommand` | Name of the command or workflow to run. ~~str (positional)~~ |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--force`, `-F` | Force re-running steps, even if nothing changed. ~~bool (flag)~~ |
| `--dry`, `-D` |  Perform a dry run and don't execute scripts. ~~bool (flag)~~ |
| `--dry`, `-D` | Perform a dry run and don't execute scripts. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **EXECUTES** | The command defined in the `project.yml`. |
@ -1441,12 +1453,12 @@ For more examples, see the templates in our
</Accordion>
| Name | Description |
| -------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--output`, `-o` | Path to output file or `-` for stdout (default). If a file is specified and it already exists and contains auto-generated docs, only the auto-generated docs section is replaced. ~~Path (positional)~~ |
|  `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ |
| **CREATES** | The Markdown-formatted project documentation. |
| Name | Description |
| ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `--output`, `-o` | Path to output file or `-` for stdout (default). If a file is specified and it already exists and contains auto-generated docs, only the auto-generated docs section is replaced. ~~Path (positional)~~ |
| `--no-emoji`, `-NE` | Don't use emoji in the titles. ~~bool (flag)~~ |
| **CREATES** | The Markdown-formatted project documentation. |
### project dvc {#project-dvc tag="command"}
@ -1485,7 +1497,7 @@ $ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
| `project_dir` | Path to project directory. Defaults to current working directory. ~~Path (positional)~~ |
| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ |
| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
| `--verbose`, `-V` |  Print more output generated by DVC. ~~bool (flag)~~ |
| `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |
@ -1576,5 +1588,5 @@ $ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--local-repo]
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
| `--local-repo`, `-l` | Local path to the model repository (will be created if it doesn't exist). Defaults to `hub` in the current working directory. ~~Path (option)~~ |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~  |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
| **UPLOADS** | The pipeline to the hub. |

View File

@ -37,13 +37,13 @@ streaming.
> augmenter = null
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Path~~ |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/training/corpus.py
@ -71,15 +71,15 @@ train/test skew.
> corpus = Corpus("./data", limit=10)
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. ~~Union[str, Path]~~ |
| _keyword-only_ | |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ |
| `shuffle` | Whether to shuffle the examples. Defaults to `False`. ~~bool~~ |
| Name | Description |
| -------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. Defaults to `False`. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Optional data augmentation callback. ~~Callable[[Language, Example], Iterable[Example]]~~ |
| `shuffle` | Whether to shuffle the examples. Defaults to `False`. ~~bool~~ |
## Corpus.\_\_call\_\_ {#call tag="method"}

View File

@ -34,7 +34,7 @@ Construct a `Doc` object. The most common way to get a `Doc` object is via the
| Name | Description |
| ---------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
| `words` | A list of strings or integer hash values to add to the document as words. ~~Optional[List[Union[str,int]]]~~ |
| `words` | A list of strings or integer hash values to add to the document as words. ~~Optional[List[Union[str,int]]]~~ |
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
| _keyword-only_ | |
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
@ -304,7 +304,8 @@ ancestor is found, e.g. if span excludes a necessary ancestor.
## Doc.has_annotation {#has_annotation tag="method"}
Check whether the doc contains annotation on a [`Token` attribute](/api/token#attributes).
Check whether the doc contains annotation on a
[`Token` attribute](/api/token#attributes).
<Infobox title="Changed in v3.0" variant="warning">
@ -398,12 +399,14 @@ Concatenate multiple `Doc` objects to form a new one. Raises an error if the
> [str(ent) for doc in docs for ent in doc.ents]
> ```
| Name | Description |
| ------------------- | ----------------------------------------------------------------------------------------------------------------- |
| `docs` | A list of `Doc` objects. ~~List[Doc]~~ |
| `ensure_whitespace` | Insert a space between two adjacent docs whenever the first doc does not end in whitespace. ~~bool~~ |
| `attrs` | Optional list of attribute ID ints or attribute name strings. ~~Optional[List[Union[str, int]]]~~ |
| **RETURNS** | The new `Doc` object that is containing the other docs or `None`, if `docs` is empty or `None`. ~~Optional[Doc]~~ |
| Name | Description |
| -------------------------------------- | ----------------------------------------------------------------------------------------------------------------- |
| `docs` | A list of `Doc` objects. ~~List[Doc]~~ |
| `ensure_whitespace` | Insert a space between two adjacent docs whenever the first doc does not end in whitespace. ~~bool~~ |
| `attrs` | Optional list of attribute ID ints or attribute name strings. ~~Optional[List[Union[str, int]]]~~ |
| _keyword-only_ | |
| `exclude` <Tag variant="new">3.3</Tag> | String names of Doc attributes to exclude. Supported: `spans`, `tensor`, `user_data`. ~~Iterable[str]~~ |
| **RETURNS** | The new `Doc` object that is containing the other docs or `None`, if `docs` is empty or `None`. ~~Optional[Doc]~~ |
## Doc.to_disk {#to_disk tag="method" new="2"}
@ -618,7 +621,7 @@ relative clauses.
To customize the noun chunk iterator in a loaded pipeline, modify
[`nlp.vocab.get_noun_chunks`](/api/vocab#attributes). If the `noun_chunk`
[syntax iterator](/usage/adding-languages#language-data) has not been
[syntax iterator](/usage/linguistic-features#language-data) has not been
implemented for the given language, a `NotImplementedError` is raised.
> #### Example

View File

@ -1123,7 +1123,7 @@ instance and factory instance.
| `factory` | The name of the registered component factory. ~~str~~ |
| `default_config` | The default config, describing the default values of the factory arguments. ~~Dict[str, Any]~~ |
| `assigns` | `Doc` or `Token` attributes assigned by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~  |
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~  |
| `requires` | `Doc` or `Token` attributes required by this component, e.g. `["token.ent_id"]`. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |
| `retokenizes` | Whether the component changes tokenization. Used for [pipe analysis](/usage/processing-pipelines#analysis). ~~bool~~ |
| `default_score_weights` | The scores to report during training, and their default weight towards the final score used to select the best model. Weights should sum to `1.0` per component and will be combined and normalized for the whole pipeline. If a weight is set to `None`, the score will not be logged or weighted. ~~Dict[str, Optional[float]]~~ |
| `scores` | All scores set by the components if it's trainable, e.g. `["ents_f", "ents_r", "ents_p"]`. Based on the `default_score_weights` and used for [pipe analysis](/usage/processing-pipelines#analysis). ~~Iterable[str]~~ |

View File

@ -103,11 +103,22 @@ and residual connections.
| `depth` | The number of convolutional layers. Recommended value is `4`. ~~int~~ |
| **CREATES** | The model using the architecture. ~~Model[Floats2d, Floats2d]~~ |
### spacy.TransitionBasedParser.v1 {#TransitionBasedParser_v1}
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN_v1}
Identical to
[`spacy.TransitionBasedParser.v2`](/api/architectures#TransitionBasedParser)
except the `use_upper` was set to `True` by default.
Identical to [`spacy.HashEmbedCNN.v2`](/api/architectures#HashEmbedCNN) except
using [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are included.
### spacy.MultiHashEmbed.v1 {#MultiHashEmbed_v1}
Identical to [`spacy.MultiHashEmbed.v2`](/api/architectures#MultiHashEmbed)
except with [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are
included.
### spacy.CharacterEmbed.v1 {#CharacterEmbed_v1}
Identical to [`spacy.CharacterEmbed.v2`](/api/architectures#CharacterEmbed)
except using [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are
included.
### spacy.TextCatEnsemble.v1 {#TextCatEnsemble_v1}
@ -147,41 +158,6 @@ network has an internal CNN Tok2Vec layer and uses attention.
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
### spacy.HashEmbedCNN.v1 {#HashEmbedCNN_v1}
Identical to [`spacy.HashEmbedCNN.v2`](/api/architectures#HashEmbedCNN) except
using [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are included.
### spacy.MultiHashEmbed.v1 {#MultiHashEmbed_v1}
Identical to [`spacy.MultiHashEmbed.v2`](/api/architectures#MultiHashEmbed)
except with [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are
included.
### spacy.CharacterEmbed.v1 {#CharacterEmbed_v1}
Identical to [`spacy.CharacterEmbed.v2`](/api/architectures#CharacterEmbed)
except using [`spacy.StaticVectors.v1`](#StaticVectors_v1) if vectors are
included.
## Layers {#layers}
These functions are available from `@spacy.registry.layers`.
### spacy.StaticVectors.v1 {#StaticVectors_v1}
Identical to [`spacy.StaticVectors.v2`](/api/architectures#StaticVectors) except
for the handling of tokens without vectors.
<Infobox title="Bugs for tokens without vectors" variant="warning">
`spacy.StaticVectors.v1` maps tokens without vectors to the final row in the
vectors table, which causes the model predictions to change if new vectors are
added to an existing vectors table. See more details in
[issue #7662](https://github.com/explosion/spaCy/issues/7662#issuecomment-813925655).
</Infobox>
### spacy.TextCatCNN.v1 {#TextCatCNN_v1}
Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means
@ -246,8 +222,35 @@ the others, but may not be as accurate, especially if texts are short.
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
### spacy.TransitionBasedParser.v1 {#TransitionBasedParser_v1}
Identical to
[`spacy.TransitionBasedParser.v2`](/api/architectures#TransitionBasedParser)
except the `use_upper` was set to `True` by default.
## Layers {#layers}
These functions are available from `@spacy.registry.layers`.
### spacy.StaticVectors.v1 {#StaticVectors_v1}
Identical to [`spacy.StaticVectors.v2`](/api/architectures#StaticVectors) except
for the handling of tokens without vectors.
<Infobox title="Bugs for tokens without vectors" variant="warning">
`spacy.StaticVectors.v1` maps tokens without vectors to the final row in the
vectors table, which causes the model predictions to change if new vectors are
added to an existing vectors table. See more details in
[issue #7662](https://github.com/explosion/spaCy/issues/7662#issuecomment-813925655).
</Infobox>
## Loggers {#loggers}
Logging utilities for spaCy are implemented in the [`spacy-loggers`](https://github.com/explosion/spacy-loggers) repo, and the functions are typically available from `@spacy.registry.loggers`.
Logging utilities for spaCy are implemented in the
[`spacy-loggers`](https://github.com/explosion/spacy-loggers) repo, and the
functions are typically available from `@spacy.registry.loggers`.
More documentation can be found in that repo's [readme](https://github.com/explosion/spacy-loggers/blob/main/README.md) file.
More documentation can be found in that repo's
[readme](https://github.com/explosion/spacy-loggers/blob/main/README.md) file.

View File

@ -30,26 +30,26 @@ pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are:
| Attribute |  Description |
| ----------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ |
| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ |
| `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ |
| Attribute | Description |
| ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
| `LENGTH` | The length of the token text. ~~int~~ |
| `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
| `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
| `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
| `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
| `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
| `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `ENT_IOB` | The IOB part of the token's entity tag. ~~str~~ |
| `ENT_ID` | The token's entity ID (`ent_id`). ~~str~~ |
| `ENT_KB_ID` | The token's entity knowledge base ID (`ent_kb_id`). ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | Operator or quantifier to determine how often to match a token pattern. ~~str~~ |
Operators and quantifiers define **how often** a token pattern should be
matched:

View File

@ -283,8 +283,9 @@ objects, if the document has been syntactically parsed. A base noun phrase, or
it so no NP-level coordination, no prepositional phrases, and no relative
clauses.
If the `noun_chunk` [syntax iterator](/usage/adding-languages#language-data) has
not been implemeted for the given language, a `NotImplementedError` is raised.
If the `noun_chunk` [syntax iterator](/usage/linguistic-features#language-data)
has not been implemeted for the given language, a `NotImplementedError` is
raised.
> #### Example
>
@ -520,12 +521,13 @@ sent = doc[sent.start : max(sent.end, span.end)]
## Span.sents {#sents tag="property" model="sentences" new="3.2.1"}
Returns a generator over the sentences the span belongs to. This property is only available
when [sentence boundaries](/usage/linguistic-features#sbd) have been set on the
document by the `parser`, `senter`, `sentencizer` or some custom function. It
will raise an error otherwise.
Returns a generator over the sentences the span belongs to. This property is
only available when [sentence boundaries](/usage/linguistic-features#sbd) have
been set on the document by the `parser`, `senter`, `sentencizer` or some custom
function. It will raise an error otherwise.
If the span happens to cross sentence boundaries, all sentences the span overlaps with will be returned.
If the span happens to cross sentence boundaries, all sentences the span
overlaps with will be returned.
> #### Example
>

View File

@ -233,7 +233,7 @@ group.
> doc.spans["errors"] = []
> doc.spans["errors"].extend([doc[1:3], doc[0:1]])
> assert len(doc.spans["errors"]) == 2
> span_group = SpanGroup([doc[1:4], doc[0:3])
> span_group = SpanGroup(doc, spans=[doc[1:4], doc[0:3]])
> doc.spans["errors"].extend(span_group)
> ```

View File

@ -263,7 +263,7 @@ Render a dependency parse tree or named entity visualization.
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span]], Doc, Span]~~ |
| `docs` | Document(s) or span(s) to visualize. ~~Union[Iterable[Union[Doc, Span, dict]], Doc, Span, dict]~~ |
| `style` | Visualization style, `"dep"` or `"ent"`. Defaults to `"dep"`. ~~str~~ |
| `page` | Render markup as full HTML page. Defaults to `True`. ~~bool~~ |
| `minify` | Minify HTML markup. Defaults to `False`. ~~bool~~ |
@ -320,7 +320,6 @@ If a setting is not present in the options, the default value will be used.
| `template` <Tag variant="new">2.2</Tag> | Optional template to overwrite the HTML used to render entity spans. Should be a format string and can use `{bg}`, `{text}` and `{label}`. See [`templates.py`](%%GITHUB_SPACY/spacy/displacy/templates.py) for examples. ~~Optional[str]~~ |
| `kb_url_template` <Tag variant="new">3.2.1</Tag> | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in. ~~Optional[str]~~ |
#### Span Visualizer options {#displacy_options-span}
> #### Example
@ -330,21 +329,19 @@ If a setting is not present in the options, the default value will be used.
> displacy.serve(doc, style="span", options=options)
> ```
| Name | Description |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| Name | Description |
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | Which spans key to render spans from. Default is `"sc"`. ~~str~~ |
| `templates` | Dictionary containing the keys `"span"`, `"slice"`, and `"start"`. These dictate how the overall span, a span slice, and the starting token will be rendered. ~~Optional[Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
| `kb_url_template` | Optional template to construct the KB url for the entity to link to. Expects a python f-string format with single field to fill in ~~Optional[str]~~ |
| `colors` | Color overrides. Entity types should be mapped to color names or values. ~~Dict[str, str]~~ |
By default, displaCy comes with colors for all entity types used by [spaCy's
trained pipelines](/models) for both entity and span visualizer. If you're
using custom entity types, you can use the `colors` setting to add your own
colors for them. Your application or pipeline package can also expose a
[`spacy_displacy_colors` entry
point](/usage/saving-loading#entry-points-displacy) to add custom labels and
their colors automatically.
By default, displaCy comes with colors for all entity types used by
[spaCy's trained pipelines](/models) for both entity and span visualizer. If
you're using custom entity types, you can use the `colors` setting to add your
own colors for them. Your application or pipeline package can also expose a
[`spacy_displacy_colors` entry point](/usage/saving-loading#entry-points-displacy)
to add custom labels and their colors automatically.
By default, displaCy links to `#` for entities without a `kb_id` set on their
span. If you wish to link an entity to their URL then consider using the
@ -354,7 +351,6 @@ span. If you wish to link an entity to their URL then consider using the
should redirect you to their Wikidata page, in this case
`https://www.wikidata.org/wiki/Q95`.
## registry {#registry source="spacy/util.py" new="3"}
spaCy's function registry extends
@ -443,8 +439,8 @@ and the accuracy scores on the development set.
The built-in, default logger is the ConsoleLogger, which prints results to the
console in tabular format. The
[spacy-loggers](https://github.com/explosion/spacy-loggers) package, included as
a dependency of spaCy, enables other loggers, such as one that
sends results to a [Weights & Biases](https://www.wandb.com/) dashboard.
a dependency of spaCy, enables other loggers, such as one that sends results to
a [Weights & Biases](https://www.wandb.com/) dashboard.
Instead of using one of the built-in loggers, you can
[implement your own](/usage/training#custom-logging).
@ -583,14 +579,14 @@ the [`Corpus`](/api/corpus) class.
> limit = 0
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ |
|  `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
| **CREATES** | The corpus reader. ~~Corpus~~ |
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `path` | The directory or filename to read from. Expects data in spaCy's binary [`.spacy` format](/api/data-formats#binary-training). ~~Union[str, Path]~~ |
| `gold_preproc` | Whether to set up the Example object with gold-standard sentences and tokens for the predictions. See [`Corpus`](/api/corpus#init) for details. ~~bool~~ |
| `max_length` | Maximum document length. Longer documents will be split into sentences, if sentence boundaries are available. Defaults to `0` for no limit. ~~int~~ |
| `limit` | Limit corpus to a subset of examples, e.g. for debugging. Defaults to `0` for no limit. ~~int~~ |
| `augmenter` | Apply some simply data augmentation, where we replace tokens with variations. This is especially useful for punctuation and case replacement, to help generalize beyond corpora that don't have smart-quotes, or only have smart quotes, etc. Defaults to `None`. ~~Optional[Callable]~~ |
| **CREATES** | The corpus reader. ~~Corpus~~ |
#### spacy.JsonlCorpus.v1 {#jsonlcorpus tag="registered function"}

View File

@ -347,14 +347,14 @@ supported for `floret` mode.
> most_similar = nlp.vocab.vectors.most_similar(queries, n=10)
> ```
| Name | Description |
| -------------- | --------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------- |
| `queries` | An array with one or more vectors. ~~numpy.ndarray~~ |
| _keyword-only_ | |
| `batch_size` | The batch size to use. Default to `1024`. ~~int~~ |
| `n` | The number of entries to return for each query. Defaults to `1`. ~~int~~ |
| `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ |
| **RETURNS** | tuple | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ |
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------------------------------- |
| `queries` | An array with one or more vectors. ~~numpy.ndarray~~ |
| _keyword-only_ | |
| `batch_size` | The batch size to use. Default to `1024`. ~~int~~ |
| `n` | The number of entries to return for each query. Defaults to `1`. ~~int~~ |
| `sort` | Whether to sort the entries returned by score. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The most similar entries as a `(keys, best_rows, scores)` tuple. ~~Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]~~ |
## Vectors.get_batch {#get_batch tag="method" new="3.2"}

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 27 KiB

After

Width:  |  Height:  |  Size: 108 KiB

View File

@ -30,10 +30,16 @@ into three components:
tagging, parsing, lemmatization and named entity recognition, or `dep` for
only tagging, parsing and lemmatization).
2. **Genre:** Type of text the pipeline is trained on, e.g. `web` or `news`.
3. **Size:** Package size indicator, `sm`, `md`, `lg` or `trf` (`sm`: no word
vectors, `md`: reduced word vector table with 20k unique vectors for ~500k
words, `lg`: large word vector table with ~500k entries, `trf`: transformer
pipeline without static word vectors)
3. **Size:** Package size indicator, `sm`, `md`, `lg` or `trf`.
`sm` and `trf` pipelines have no static word vectors.
For pipelines with default vectors, `md` has a reduced word vector table with
20k unique vectors for ~500k words and `lg` has a large word vector table
with ~500k entries.
For pipelines with floret vectors, `md` vector tables have 50k entries and
`lg` vector tables have 200k entries.
For example, [`en_core_web_sm`](/models/en#en_core_web_sm) is a small English
pipeline trained on written web text (blogs, news, comments), that includes
@ -90,19 +96,42 @@ Main changes from spaCy v2 models:
In the `sm`/`md`/`lg` models:
- The `tagger`, `morphologizer` and `parser` components listen to the `tok2vec`
component.
component. If the lemmatizer is trainable (v3.3+), `lemmatizer` also listens
to `tok2vec`.
- The `attribute_ruler` maps `token.tag` to `token.pos` if there is no
`morphologizer`. The `attribute_ruler` additionally makes sure whitespace is
tagged consistently and copies `token.pos` to `token.tag` if there is no
tagger. For English, the attribute ruler can improve its mapping from
`token.tag` to `token.pos` if dependency parses from a `parser` are present,
but the parser is not required.
- The `lemmatizer` component for many languages (Catalan, Dutch, English,
French, Greek, Italian Macedonian, Norwegian, Polish and Spanish) requires
`token.pos` annotation from either `tagger`+`attribute_ruler` or
`morphologizer`.
- The `lemmatizer` component for many languages requires `token.pos` annotation
from either `tagger`+`attribute_ruler` or `morphologizer`.
- The `ner` component is independent with its own internal tok2vec layer.
#### CNN/CPU pipelines with floret vectors
The Finnish, Korean and Swedish `md` and `lg` pipelines use
[floret vectors](/usage/v3-2#vectors) instead of default vectors. If you're
running a trained pipeline on texts and working with [`Doc`](/api/doc) objects,
you shouldn't notice any difference with floret vectors. With floret vectors no
tokens are out-of-vocabulary, so [`Token.is_oov`](/api/token#attributes) will
return `False` for all tokens.
If you access vectors directly for similarity comparisons, there are a few
differences because floret vectors don't include a fixed word list like the
vector keys for default vectors.
- If your workflow iterates over the vector keys, you need to use an external
word list instead:
```diff
- lexemes = [nlp.vocab[orth] for orth in nlp.vocab.vectors]
+ lexemes = [nlp.vocab[word] for word in external_word_list]
```
- [`Vectors.most_similar`](/api/vectors#most_similar) is not supported because
there's no fixed list of vectors to compare your vectors to.
### Transformer pipeline design {#design-trf}
In the transformer (`trf`) models, the `tagger`, `parser` and `ner` (if present)
@ -133,10 +162,14 @@ nlp = spacy.load("en_core_web_trf", disable=["tagger", "attribute_ruler", "lemma
<Infobox variant="warning" title="Rule-based and POS-lookup lemmatizers require
Token.pos">
The lemmatizer depends on `tagger`+`attribute_ruler` or `morphologizer` for
Catalan, Dutch, English, French, Greek, Italian, Macedonian, Norwegian, Polish
and Spanish. If you disable any of these components, you'll see lemmatizer
warnings unless the lemmatizer is also disabled.
The lemmatizer depends on `tagger`+`attribute_ruler` or `morphologizer` for a
number of languages. If you disable any of these components, you'll see
lemmatizer warnings unless the lemmatizer is also disabled.
**v3.3**: Catalan, English, French, Russian and Spanish
**v3.0-v3.2**: Catalan, Dutch, English, French, Greek, Italian, Macedonian,
Norwegian, Polish, Russian and Spanish
</Infobox>
@ -154,10 +187,34 @@ nlp.enable_pipe("senter")
The `senter` component is ~10&times; faster than the parser and more accurate
than the rule-based `sentencizer`.
#### Switch from trainable lemmatizer to default lemmatizer
Since v3.3, a number of pipelines use a trainable lemmatizer. You can check whether
the lemmatizer is trainable:
```python
nlp = spacy.load("de_core_web_sm")
assert nlp.get_pipe("lemmatizer").is_trainable
```
If you'd like to switch to a non-trainable lemmatizer that's similar to v3.2 or
earlier, you can replace the trainable lemmatizer with the default non-trainable
lemmatizer:
```python
# Requirements: pip install spacy-lookups-data
nlp = spacy.load("de_core_web_sm")
# Remove existing lemmatizer
nlp.remove_pipe("lemmatizer")
# Add non-trainable lemmatizer from language defaults
# and load lemmatizer tables from spacy-lookups-data
nlp.add_pipe("lemmatizer").initialize()
```
#### Switch from rule-based to lookup lemmatization
For the Dutch, English, French, Greek, Macedonian, Norwegian and Spanish
pipelines, you can switch from the default rule-based lemmatizer to a lookup
pipelines, you can swap out a trainable or rule-based lemmatizer for a lookup
lemmatizer:
```python

View File

@ -530,7 +530,8 @@ models, which can **improve the accuracy** of your components.
Word vectors in spaCy are "static" in the sense that they are not learned
parameters of the statistical models, and spaCy itself does not feature any
algorithms for learning word vector tables. You can train a word vectors table
using tools such as [Gensim](https://radimrehurek.com/gensim/),
using tools such as [floret](https://github.com/explosion/floret),
[Gensim](https://radimrehurek.com/gensim/),
[FastText](https://fasttext.cc/) or
[GloVe](https://nlp.stanford.edu/projects/glove/), or download existing
pretrained vectors. The [`init vectors`](/api/cli#init-vectors) command lets you

View File

@ -129,15 +129,14 @@ machine learning library, [Thinc](https://thinc.ai). For GPU support, we've been
grateful to use the work of Chainer's [CuPy](https://cupy.chainer.org) module,
which provides a numpy-compatible interface for GPU arrays.
spaCy can be installed on GPU by specifying `spacy[cuda]`, `spacy[cuda90]`,
`spacy[cuda91]`, `spacy[cuda92]`, `spacy[cuda100]`, `spacy[cuda101]`,
`spacy[cuda102]`, `spacy[cuda110]`, `spacy[cuda111]` or `spacy[cuda112]`. If you
know your cuda version, using the more explicit specifier allows cupy to be
installed via wheel, saving some compilation time. The specifiers should install
spaCy can be installed for a CUDA-compatible GPU by specifying `spacy[cuda]`,
`spacy[cuda102]`, `spacy[cuda112]`, `spacy[cuda113]`, etc. If you know your
CUDA version, using the more explicit specifier allows CuPy to be installed via
wheel, saving some compilation time. The specifiers should install
[`cupy`](https://cupy.chainer.org).
```bash
$ pip install -U %%SPACY_PKG_NAME[cuda92]%%SPACY_PKG_FLAGS
$ pip install -U %%SPACY_PKG_NAME[cuda113]%%SPACY_PKG_FLAGS
```
Once you have a GPU-enabled installation, the best way to activate it is to call

View File

@ -48,7 +48,7 @@ but do not change its part-of-speech. We say that a **lemma** (root form) is
**inflected** (modified/combined) with one or more **morphological features** to
create a surface form. Here are some examples:
| Context | Surface | Lemma | POS |  Morphological Features |
| Context | Surface | Lemma | POS | Morphological Features |
| ---------------------------------------- | ------- | ----- | ------ | ---------------------------------------- |
| I was reading the paper | reading | read | `VERB` | `VerbForm=Ger` |
| I don't watch the news, I read the paper | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` |
@ -430,7 +430,7 @@ for token in doc:
print(token.text, token.pos_, token.dep_, token.head.text)
```
| Text |  POS | Dep | Head text |
| Text | POS | Dep | Head text |
| ----------------------------------- | ------ | ------- | --------- |
| Credit and mortgage account holders | `NOUN` | `nsubj` | submit |
| must | `VERB` | `aux` | submit |

View File

@ -27,6 +27,35 @@ import QuickstartModels from 'widgets/quickstart-models.js'
<QuickstartModels title="Quickstart" id="quickstart" description="Install a default trained pipeline package, get the code to load it from within spaCy and an example to test it. For more options, see the section on available packages below." />
### Usage note
> If lemmatization rules are available for your language, make sure to install
> spaCy with the `lookups` option, or install
> [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
> separately in the same environment:
>
> ```bash
> $ pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
> ```
If a trained pipeline is available for a language, you can download it using the
[`spacy download`](/api/cli#download) command as shown above. In order to use
languages that don't yet come with a trained pipeline, you have to import them
directly, or use [`spacy.blank`](/api/top-level#spacy.blank):
```python
from spacy.lang.yo import Yoruba
nlp = Yoruba() # use directly
nlp = spacy.blank("yo") # blank instance
```
A blank pipeline is typically just a tokenizer. You might want to create a blank
pipeline when you only need a tokenizer, when you want to add more components
from scratch, or for testing purposes. Initializing the language object directly
yields the same result as generating it using `spacy.blank()`. In both cases the
default configuration for the chosen language is loaded, and no pretrained
components will be available.
## Language support {#languages}
spaCy currently provides support for the following languages. You can help by
@ -37,28 +66,6 @@ contribute to development. Also see the
[training documentation](/usage/training) for how to train your own pipelines on
your data.
> #### Usage note
>
> If a trained pipeline is available for a language, you can download it using
> the [`spacy download`](/api/cli#download) command. In order to use languages
> that don't yet come with a trained pipeline, you have to import them directly,
> or use [`spacy.blank`](/api/top-level#spacy.blank):
>
> ```python
> from spacy.lang.fi import Finnish
> nlp = Finnish() # use directly
> nlp = spacy.blank("fi") # blank instance
> ```
>
> If lemmatization rules are available for your language, make sure to install
> spaCy with the `lookups` option, or install
> [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
> separately in the same environment:
>
> ```bash
> $ pip install -U %%SPACY_PKG_NAME[lookups]%%SPACY_PKG_FLAGS
> ```
import Languages from 'widgets/languages.js'
<Languages />

View File

@ -94,9 +94,8 @@ also use any private repo you have access to with Git.
Assets are data files your project needs for example, the training and
evaluation data or pretrained vectors and embeddings to initialize your model
with. Each project template comes with a `project.yml` that defines the assets
to download and where to put them. The
[`spacy project assets`](/api/cli#project-assets) will fetch the project assets
for you:
to download and where to put them. The [`spacy project assets`](/api/cli#run)
will fetch the project assets for you:
```cli
$ cd some_example_project
@ -108,6 +107,11 @@ even cloud storage such as GCS and S3. You can also fetch assets using git, by
replacing the `url` string with a `git` block. spaCy will use Git's "sparse
checkout" feature to avoid downloading the whole repository.
Sometimes your project configuration may include large assets that you don't
necessarily want to download when you run `spacy project assets`. That's why
assets can be marked as [`extra`](#data-assets-url) - by default, these assets
are not downloaded. If they should be, run `spacy project assets --extra`.
### 3. Run a command {#run}
> #### project.yml
@ -215,19 +219,27 @@ pipelines.
> #### Tip: Multi-line YAML syntax for long values
>
> YAML has [multi-line syntax](https://yaml-multiline.info/) that can be
> helpful for readability with longer values such as project descriptions or
> commands that take several arguments.
> YAML has [multi-line syntax](https://yaml-multiline.info/) that can be helpful
> for readability with longer values such as project descriptions or commands
> that take several arguments.
```yaml
%%GITHUB_PROJECTS/pipelines/tagger_parser_ud/project.yml
```
> #### Tip: Overriding variables on the CLI
>
> If you want to override one or more variables on the CLI and are not already specifying a
> project directory, you need to add `.` as a placeholder:
>
> ```
> python -m spacy project run test . --vars.foo bar
> ```
| Section | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `title` | An optional project title used in `--help` message and [auto-generated docs](#custom-docs). |
| `description` | An optional project description used in [auto-generated docs](#custom-docs). |
| `vars` | A dictionary of variables that can be referenced in paths, URLs and scripts, just like [`config.cfg` variables](/usage/training#config-interpolation). For example, `${vars.name}` will use the value of the variable `name`. Variables need to be defined in the section `vars`, but can be a nested dict, so you're able to reference `${vars.model.name}`. |
| `vars` | A dictionary of variables that can be referenced in paths, URLs and scripts and overriden on the CLI, just like [`config.cfg` variables](/usage/training#config-interpolation). For example, `${vars.name}` will use the value of the variable `name`. Variables need to be defined in the section `vars`, but can be a nested dict, so you're able to reference `${vars.model.name}`. |
| `env` | A dictionary of variables, mapped to the names of environment variables that will be read in when running the project. For example, `${env.name}` will use the value of the environment variable defined as `name`. |
| `directories` | An optional list of [directories](#project-files) that should be created in the project for assets, training outputs, metrics etc. spaCy will make sure that these directories always exist. |
| `assets` | A list of assets that can be fetched with the [`project assets`](/api/cli#project-assets) command. `url` defines a URL or local path, `dest` is the destination file relative to the project directory, and an optional `checksum` ensures that an error is raised if the file's checksum doesn't match. Instead of `url`, you can also provide a `git` block with the keys `repo`, `branch` and `path`, to download from a Git repo. |
@ -261,8 +273,9 @@ dependencies to use certain protocols.
> - dest: 'assets/training.spacy'
> url: 'https://example.com/data.spacy'
> checksum: '63373dd656daa1fd3043ce166a59474c'
> # Download from Google Cloud Storage bucket
> # Optional download from Google Cloud Storage bucket
> - dest: 'assets/development.spacy'
> extra: True
> url: 'gs://your-bucket/corpora'
> checksum: '5113dc04e03f079525edd8df3f4f39e3'
> ```
@ -270,6 +283,7 @@ dependencies to use certain protocols.
| Name | Description |
| ------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `dest` | The destination path to save the downloaded asset to (relative to the project directory), including the file name. |
| `extra` | Optional flag determining whether this asset is downloaded only if `spacy project assets` is run with `--extra`. `False` by default. |
| `url` | The URL to download from, using the respective protocol. |
| `checksum` | Optional checksum of the file. If provided, it will be used to verify that the file matches and downloads will be skipped if a local file with the same checksum already exists. |
| `description` | Optional asset description, used in [auto-generated docs](#custom-docs). |
@ -294,12 +308,12 @@ files you need and not the whole repo.
> description: 'The training data (5000 examples)'
> ```
| Name | Description |
| ------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `dest` | The destination path to save the downloaded asset to (relative to the project directory), including the file name. |
| Name | Description |
| ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `dest` | The destination path to save the downloaded asset to (relative to the project directory), including the file name. |
| `git` | `repo`: The URL of the repo to download from.<br />`path`: Path of the file or directory to download, relative to the repo root. "" specifies the root directory.<br />`branch`: The branch to download from. Defaults to `"master"`. |
| `checksum` | Optional checksum of the file. If provided, it will be used to verify that the file matches and downloads will be skipped if a local file with the same checksum already exists. |
| `description` | Optional asset description, used in [auto-generated docs](#custom-docs). |
| `checksum` | Optional checksum of the file. If provided, it will be used to verify that the file matches and downloads will be skipped if a local file with the same checksum already exists. |
| `description` | Optional asset description, used in [auto-generated docs](#custom-docs). |
#### Working with private assets {#data-asets-private}

View File

@ -158,23 +158,23 @@ The available token pattern keys correspond to a number of
[`Token` attributes](/api/token#attributes). The supported attributes for
rule-based matching are:
| Attribute |  Description |
| ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
|  `LENGTH` | The length of the token text. ~~int~~ |
|  `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
|  `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
|  `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
|  `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
|  `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
|  `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ |
| Attribute | Description |
| ---------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `ORTH` | The exact verbatim text of a token. ~~str~~ |
| `TEXT` <Tag variant="new">2.1</Tag> | The exact verbatim text of a token. ~~str~~ |
| `NORM` | The normalized form of the token text. ~~str~~ |
| `LOWER` | The lowercase form of the token text. ~~str~~ |
| `LENGTH` | The length of the token text. ~~int~~ |
| `IS_ALPHA`, `IS_ASCII`, `IS_DIGIT` | Token text consists of alphabetic characters, ASCII characters, digits. ~~bool~~ |
| `IS_LOWER`, `IS_UPPER`, `IS_TITLE` | Token text is in lowercase, uppercase, titlecase. ~~bool~~ |
| `IS_PUNCT`, `IS_SPACE`, `IS_STOP` | Token is punctuation, whitespace, stop word. ~~bool~~ |
| `IS_SENT_START` | Token is start of sentence. ~~bool~~ |
| `LIKE_NUM`, `LIKE_URL`, `LIKE_EMAIL` | Token text resembles a number, URL, email. ~~bool~~ |
| `SPACY` | Token has a trailing space. ~~bool~~ |
| `POS`, `TAG`, `MORPH`, `DEP`, `LEMMA`, `SHAPE` | The token's simple and extended part-of-speech tag, morphological analysis, dependency label, lemma, shape. Note that the values of these attributes are case-sensitive. For a list of available part-of-speech tags and dependency labels, see the [Annotation Specifications](/api/annotation). ~~str~~ |
| `ENT_TYPE` | The token's entity label. ~~str~~ |
| `_` <Tag variant="new">2.1</Tag> | Properties in [custom extension attributes](/usage/processing-pipelines#custom-components-attributes). ~~Dict[str, Any]~~ |
| `OP` | [Operator or quantifier](#quantifiers) to determine how often to match a token pattern. ~~str~~ |
<Accordion title="Does it matter if the attribute names are uppercase or lowercase?">
@ -949,7 +949,7 @@ for match_id, start, end in matcher(doc):
The examples here use [`nlp.make_doc`](/api/language#make_doc) to create `Doc`
object patterns as efficiently as possible and without running any of the other
pipeline components. If the token attribute you want to match on are set by a
pipeline components. If the token attribute you want to match on is set by a
pipeline component, **make sure that the pipeline component runs** when you
create the pattern. For example, to match on `POS` or `LEMMA`, the pattern `Doc`
objects need to have part-of-speech tags set by the `tagger` or `morphologizer`.
@ -960,9 +960,9 @@ disable components selectively.
</Infobox>
Another possible use case is matching number tokens like IP addresses based on
their shape. This means that you won't have to worry about how those string will
be tokenized and you'll be able to find tokens and combinations of tokens based
on a few examples. Here, we're matching on the shapes `ddd.d.d.d` and
their shape. This means that you won't have to worry about how those strings
will be tokenized and you'll be able to find tokens and combinations of tokens
based on a few examples. Here, we're matching on the shapes `ddd.d.d.d` and
`ddd.ddd.d.d`:
```python
@ -1433,7 +1433,7 @@ of `"phrase_matcher_attr": "POS"` for the entity ruler.
Running the full language pipeline across every pattern in a large list scales
linearly and can therefore take a long time on large amounts of phrase patterns.
As of spaCy v2.2.4 the `add_patterns` function has been refactored to use
nlp.pipe on all phrase patterns resulting in about a 10x-20x speed up with
`nlp.pipe` on all phrase patterns resulting in about a 10x-20x speed up with
5,000-100,000 phrase patterns respectively. Even with this speedup (but
especially if you're using an older version) the `add_patterns` function can
still take a long time. An easy workaround to make this function run faster is

View File

@ -247,7 +247,7 @@ a consistent format. There are no command-line arguments that need to be set,
and no hidden defaults. However, there can still be scenarios where you may want
to override config settings when you run [`spacy train`](/api/cli#train). This
includes **file paths** to vectors or other resources that shouldn't be
hard-code in a config file, or **system-dependent settings**.
hard-coded in a config file, or **system-dependent settings**.
For cases like this, you can set additional command-line options starting with
`--` that correspond to the config section and value to override. For example,
@ -730,7 +730,7 @@ with the name of the respective [registry](/api/top-level#registry), e.g.
`@spacy.registry.architectures`, and a string name to assign to your function.
Registering custom functions allows you to **plug in models** defined in PyTorch
or TensorFlow, make **custom modifications** to the `nlp` object, create custom
optimizers or schedules, or **stream in data** and preprocesses it on the fly
optimizers or schedules, or **stream in data** and preprocess it on the fly
while training.
Each custom function can have any number of arguments that are passed in via the

View File

@ -132,13 +132,13 @@ your own.
> contributions for Catalan and to Kenneth Enevoldsen for Danish. For additional
> Danish pipelines, check out [DaCy](https://github.com/KennethEnevoldsen/DaCy).
| Package | Language | UPOS | Parser LAS |  NER F |
| ------------------------------------------------- | -------- | ---: | ---------: | -----: |
| [`ca_core_news_sm`](/models/ca#ca_core_news_sm) | Catalan | 98.2 | 87.4 | 79.8 |
| [`ca_core_news_md`](/models/ca#ca_core_news_md) | Catalan | 98.3 | 88.2 | 84.0 |
| [`ca_core_news_lg`](/models/ca#ca_core_news_lg) | Catalan | 98.5 | 88.4 | 84.2 |
| [`ca_core_news_trf`](/models/ca#ca_core_news_trf) | Catalan | 98.9 | 93.0 | 91.2 |
| [`da_core_news_trf`](/models/da#da_core_news_trf) | Danish | 98.0 | 85.0 | 82.9 |
| Package | Language | UPOS | Parser LAS | NER F |
| ------------------------------------------------- | -------- | ---: | ---------: | ----: |
| [`ca_core_news_sm`](/models/ca#ca_core_news_sm) | Catalan | 98.2 | 87.4 | 79.8 |
| [`ca_core_news_md`](/models/ca#ca_core_news_md) | Catalan | 98.3 | 88.2 | 84.0 |
| [`ca_core_news_lg`](/models/ca#ca_core_news_lg) | Catalan | 98.5 | 88.4 | 84.2 |
| [`ca_core_news_trf`](/models/ca#ca_core_news_trf) | Catalan | 98.9 | 93.0 | 91.2 |
| [`da_core_news_trf`](/models/da#da_core_news_trf) | Danish | 98.0 | 85.0 | 82.9 |
### Resizable text classification architectures {#resizable-textcat}

247
website/docs/usage/v3-3.md Normal file
View File

@ -0,0 +1,247 @@
---
title: What's New in v3.3
teaser: New features and how to upgrade
menu:
- ['New Features', 'features']
- ['Upgrading Notes', 'upgrading']
---
## New features {#features hidden="true"}
spaCy v3.3 improves the speed of core pipeline components, adds a new trainable
lemmatizer, and introduces trained pipelines for Finnish, Korean and Swedish.
### Speed improvements {#speed}
v3.3 includes a slew of speed improvements:
- Speed up parser and NER by using constant-time head lookups.
- Support unnormalized softmax probabilities in `spacy.Tagger.v2` to speed up
inference for tagger, morphologizer, senter and trainable lemmatizer.
- Speed up parser projectivization functions.
- Replace `Ragged` with faster `AlignmentArray` in `Example` for training.
- Improve `Matcher` speed.
- Improve serialization speed for empty `Doc.spans`.
For longer texts, the trained pipeline speeds improve **15%** or more in
prediction. We benchmarked `en_core_web_md` (same components as in v3.2) and
`de_core_news_md` (with the new trainable lemmatizer) across a range of text
sizes on Linux (Intel Xeon W-2265) and OS X (M1) to compare spaCy v3.2 vs. v3.3:
**Intel Xeon W-2265**
| Model | Avg. Words/Doc | v3.2 Words/Sec | v3.3 Words/Sec | Diff |
| :----------------------------------------------- | -------------: | -------------: | -------------: | -----: |
| [`en_core_web_md`](/models/en#en_core_web_md) | 100 | 17292 | 17441 | 0.86% |
| (=same components) | 1000 | 15408 | 16024 | 4.00% |
| | 10000 | 12798 | 15346 | 19.91% |
| [`de_core_news_md`](/models/de/#de_core_news_md) | 100 | 20221 | 19321 | -4.45% |
| (+v3.3 trainable lemmatizer) | 1000 | 17480 | 17345 | -0.77% |
| | 10000 | 14513 | 17036 | 17.38% |
**Apple M1**
| Model | Avg. Words/Doc | v3.2 Words/Sec | v3.3 Words/Sec | Diff |
| ------------------------------------------------ | -------------: | -------------: | -------------: | -----: |
| [`en_core_web_md`](/models/en#en_core_web_md) | 100 | 18272 | 18408 | 0.74% |
| (=same components) | 1000 | 18794 | 19248 | 2.42% |
| | 10000 | 15144 | 17513 | 15.64% |
| [`de_core_news_md`](/models/de/#de_core_news_md) | 100 | 19227 | 19591 | 1.89% |
| (+v3.3 trainable lemmatizer) | 1000 | 20047 | 20628 | 2.90% |
| | 10000 | 15921 | 18546 | 16.49% |
### Trainable lemmatizer {#trainable-lemmatizer}
The new [trainable lemmatizer](/api/edittreelemmatizer) component uses
[edit trees](https://explosion.ai/blog/edit-tree-lemmatizer) to transform tokens
into lemmas. Try out the trainable lemmatizer with the
[training quickstart](/usage/training#quickstart)!
### displaCy support for overlapping spans and arcs {#displacy}
displaCy now supports overlapping spans with a new
[`span`](/usage/visualizers#span) style and multiple arcs with different labels
between the same tokens for [`dep`](/usage/visualizers#dep) visualizations.
Overlapping spans can be visualized for any spans key in `doc.spans`:
```python
import spacy
from spacy import displacy
from spacy.tokens import Span
nlp = spacy.blank("en")
text = "Welcome to the Bank of China."
doc = nlp(text)
doc.spans["custom"] = [Span(doc, 3, 6, "ORG"), Span(doc, 5, 6, "GPE")]
displacy.serve(doc, style="span", options={"spans_key": "custom"})
```
import DisplacySpanHtml from 'images/displacy-span.html'
<Iframe title="displaCy visualizer for overlapping spans" html={DisplacySpanHtml} height={180} />
## Additional features and improvements
- Config comparisons with [`spacy debug diff-config`](/api/cli#debug-diff).
- Span suggester debugging with
[`SpanCategorizer.set_candidates`](/api/spancategorizer#set_candidates).
- Big endian support with
[`thinc-bigendian-ops`](https://github.com/andrewsi-z/thinc-bigendian-ops) and
updates to make `floret`, `murmurhash`, Thinc and spaCy endian neutral.
- Initial support for Lower Sorbian and Upper Sorbian.
- Language updates for English, French, Italian, Japanese, Korean, Norwegian,
Russian, Slovenian, Spanish, Turkish, Ukrainian and Vietnamese.
- New noun chunks for Finnish.
## Trained pipelines {#pipelines}
### New trained pipelines {#new-pipelines}
v3.3 introduces new CPU/CNN pipelines for Finnish, Korean and Swedish, which use
the new trainable lemmatizer and
[floret vectors](https://github.com/explosion/floret). Due to the use
[Bloom embeddings](https://explosion.ai/blog/bloom-embeddings) and subwords, the
pipelines have compact vectors with no out-of-vocabulary words.
| Package | Language | UPOS | Parser LAS | NER F |
| ----------------------------------------------- | -------- | ---: | ---------: | ----: |
| [`fi_core_news_sm`](/models/fi#fi_core_news_sm) | Finnish | 92.5 | 71.9 | 75.9 |
| [`fi_core_news_md`](/models/fi#fi_core_news_md) | Finnish | 95.9 | 78.6 | 80.6 |
| [`fi_core_news_lg`](/models/fi#fi_core_news_lg) | Finnish | 96.2 | 79.4 | 82.4 |
| [`ko_core_news_sm`](/models/ko#ko_core_news_sm) | Korean | 86.1 | 65.6 | 71.3 |
| [`ko_core_news_md`](/models/ko#ko_core_news_md) | Korean | 94.7 | 80.9 | 83.1 |
| [`ko_core_news_lg`](/models/ko#ko_core_news_lg) | Korean | 94.7 | 81.3 | 85.3 |
| [`sv_core_news_sm`](/models/sv#sv_core_news_sm) | Swedish | 95.0 | 75.9 | 74.7 |
| [`sv_core_news_md`](/models/sv#sv_core_news_md) | Swedish | 96.3 | 78.5 | 79.3 |
| [`sv_core_news_lg`](/models/sv#sv_core_news_lg) | Swedish | 96.3 | 79.1 | 81.1 |
### Pipeline updates {#pipeline-updates}
The following languages switch from lookup or rule-based lemmatizers to the new
trainable lemmatizer: Danish, Dutch, German, Greek, Italian, Lithuanian,
Norwegian, Polish, Portuguese and Romanian. The overall lemmatizer accuracy
improves for all of these pipelines, but be aware that the types of errors may
look quite different from the lookup-based lemmatizers. If you'd prefer to
continue using the previous lemmatizer, you can
[switch from the trainable lemmatizer to a non-trainable lemmatizer](/models#design-modify).
<figure>
| Model | v3.2 Lemma Acc | v3.3 Lemma Acc |
| ----------------------------------------------- | -------------: | -------------: |
| [`da_core_news_md`](/models/da#da_core_news_md) | 84.9 | 94.8 |
| [`de_core_news_md`](/models/de#de_core_news_md) | 73.4 | 97.7 |
| [`el_core_news_md`](/models/el#el_core_news_md) | 56.5 | 88.9 |
| [`fi_core_news_md`](/models/fi#fi_core_news_md) | - | 86.2 |
| [`it_core_news_md`](/models/it#it_core_news_md) | 86.6 | 97.2 |
| [`ko_core_news_md`](/models/ko#ko_core_news_md) | - | 90.0 |
| [`lt_core_news_md`](/models/lt#lt_core_news_md) | 71.1 | 84.8 |
| [`nb_core_news_md`](/models/nb#nb_core_news_md) | 76.7 | 97.1 |
| [`nl_core_news_md`](/models/nl#nl_core_news_md) | 81.5 | 94.0 |
| [`pl_core_news_md`](/models/pl#pl_core_news_md) | 87.1 | 93.7 |
| [`pt_core_news_md`](/models/pt#pt_core_news_md) | 76.7 | 96.9 |
| [`ro_core_news_md`](/models/ro#ro_core_news_md) | 81.8 | 95.5 |
| [`sv_core_news_md`](/models/sv#sv_core_news_md) | - | 95.5 |
</figure>
In addition, the vectors in the English pipelines are deduplicated to improve
the pruned vectors in the `md` models and reduce the `lg` model size.
## Notes about upgrading from v3.2 {#upgrading}
### Span comparisons
Span comparisons involving ordering (`<`, `<=`, `>`, `>=`) now take all span
attributes into account (start, end, label, and KB ID) so spans may be sorted in
a slightly different order.
### Whitespace annotation
During training, annotation on whitespace tokens is handled in the same way as
annotation on non-whitespace tokens in order to allow custom whitespace
annotation.
### Doc.from_docs
[`Doc.from_docs`](/api/doc#from_docs) now includes `Doc.tensor` by default and
supports excludes with an `exclude` argument in the same format as
`Doc.to_bytes`. The supported exclude fields are `spans`, `tensor` and
`user_data`.
Docs including `Doc.tensor` may be quite a bit larger in RAM, so to exclude
`Doc.tensor` as in v3.2:
```diff
-merged_doc = Doc.from_docs(docs)
+merged_doc = Doc.from_docs(docs, exclude=["tensor"])
```
### Using trained pipelines with floret vectors
If you're running a new trained pipeline for Finnish, Korean or Swedish on new
texts and working with `Doc` objects, you shouldn't notice any difference with
floret vectors vs. default vectors.
If you use vectors for similarity comparisons, there are a few differences,
mainly because a floret pipeline doesn't include any kind of frequency-based
word list similar to the list of in-vocabulary vector keys with default vectors.
- If your workflow iterates over the vector keys, you should use an external
word list instead:
```diff
- lexemes = [nlp.vocab[orth] for orth in nlp.vocab.vectors]
+ lexemes = [nlp.vocab[word] for word in external_word_list]
```
- `Vectors.most_similar` is not supported because there's no fixed list of
vectors to compare your vectors to.
### Pipeline package version compatibility {#version-compat}
> #### Using legacy implementations
>
> In spaCy v3, you'll still be able to load and reference legacy implementations
> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the
> components or architectures change and newer versions are available in the
> core library.
When you're loading a pipeline package trained with an earlier version of spaCy
v3, you will see a warning telling you that the pipeline may be incompatible.
This doesn't necessarily have to be true, but we recommend running your
pipelines against your test suite or evaluation data to make sure there are no
unexpected results.
If you're using one of the [trained pipelines](/models) we provide, you should
run [`spacy download`](/api/cli#download) to update to the latest version. To
see an overview of all installed packages and their compatibility, you can run
[`spacy validate`](/api/cli#validate).
If you've trained your own custom pipeline and you've confirmed that it's still
working as expected, you can update the spaCy version requirements in the
[`meta.json`](/api/data-formats#meta):
```diff
- "spacy_version": ">=3.2.0,<3.3.0",
+ "spacy_version": ">=3.2.0,<3.4.0",
```
### Updating v3.2 configs
To update a config from spaCy v3.2 with the new v3.3 settings, run
[`init fill-config`](/api/cli#init-fill-config):
```cli
$ python -m spacy init fill-config config-v3.2.cfg config-v3.3.cfg
```
In many cases ([`spacy train`](/api/cli#train),
[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in
automatically, but you'll need to fill in the new settings to run
[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data).
To see the speed improvements for the
[`Tagger` architecture](/api/architectures#Tagger), edit your config to switch
from `spacy.Tagger.v1` to `spacy.Tagger.v2` and then run `init fill-config`.

View File

@ -116,7 +116,7 @@ import Benchmarks from 'usage/\_benchmarks-models.md'
> corpus that had both syntactic and entity annotations, so the transformer
> models for those languages do not include NER.
| Package | Language | Transformer | Tagger | Parser |  NER |
| Package | Language | Transformer | Tagger | Parser | NER |
| ------------------------------------------------ | -------- | --------------------------------------------------------------------------------------------- | -----: | -----: | ---: |
| [`en_core_web_trf`](/models/en#en_core_web_trf) | English | [`roberta-base`](https://huggingface.co/roberta-base) | 97.8 | 95.2 | 89.9 |
| [`de_dep_news_trf`](/models/de#de_dep_news_trf) | German | [`bert-base-german-cased`](https://huggingface.co/bert-base-german-cased) | 99.0 | 95.8 | - |
@ -856,9 +856,9 @@ attribute ruler before training using the `[initialize]` block of your config.
### Using Lexeme Tables
To use tables like `lexeme_prob` when training a model from scratch, you need
to add an entry to the `initialize` block in your config. Here's what that
looks like for the existing trained pipelines:
To use tables like `lexeme_prob` when training a model from scratch, you need to
add an entry to the `initialize` block in your config. Here's what that looks
like for the existing trained pipelines:
```ini
[initialize.lookups]

View File

@ -5,6 +5,7 @@ new: 2
menu:
- ['Dependencies', 'dep']
- ['Named Entities', 'ent']
- ['Spans', 'span']
- ['Jupyter Notebooks', 'jupyter']
- ['Rendering HTML', 'html']
- ['Web app usage', 'webapp']
@ -192,7 +193,7 @@ displacy.serve(doc, style="span")
import DisplacySpanHtml from 'images/displacy-span.html'
<Iframe title="displaCy visualizer for entities" html={DisplacySpanHtml} height={180} />
<Iframe title="displaCy visualizer for overlapping spans" html={DisplacySpanHtml} height={180} />
The span visualizer lets you customize the following `options`:
@ -342,9 +343,7 @@ want to visualize output from other libraries, like [NLTK](http://www.nltk.org)
or
[SyntaxNet](https://github.com/tensorflow/models/tree/master/research/syntaxnet).
If you set `manual=True` on either `render()` or `serve()`, you can pass in data
in displaCy's format (instead of `Doc` objects). When setting `ents` manually,
make sure to supply them in the right order, i.e. starting with the lowest start
position.
in displaCy's format as a dictionary (instead of `Doc` objects).
> #### Example
>

View File

@ -62,6 +62,11 @@
"example": "Dies ist ein Satz.",
"has_examples": true
},
{
"code": "dsb",
"name": "Lower Sorbian",
"has_examples": true
},
{
"code": "el",
"name": "Greek",
@ -159,6 +164,11 @@
"name": "Croatian",
"has_examples": true
},
{
"code": "hsb",
"name": "Upper Sorbian",
"has_examples": true
},
{
"code": "hu",
"name": "Hungarian",

View File

@ -11,7 +11,8 @@
{ "text": "spaCy 101", "url": "/usage/spacy-101" },
{ "text": "New in v3.0", "url": "/usage/v3" },
{ "text": "New in v3.1", "url": "/usage/v3-1" },
{ "text": "New in v3.2", "url": "/usage/v3-2" }
{ "text": "New in v3.2", "url": "/usage/v3-2" },
{ "text": "New in v3.3", "url": "/usage/v3-3" }
]
},
{

View File

@ -298,6 +298,10 @@
"github": "SamEdwardes/spacytextblob",
"pip": "spacytextblob",
"code_example": [
"# the following installations are required",
"# python -m textblob.download_corpora",
"# python -m spacy download en_core_web_sm",
"",
"import spacy",
"from spacytextblob.spacytextblob import SpacyTextBlob",
"",
@ -2087,6 +2091,20 @@
"youtube": "f4sqeLRzkPg",
"category": ["videos"]
},
{
"type": "education",
"id": "video-intro-to-nlp-episode-6",
"title": "Intro to NLP with spaCy (6)",
"slogan": "Episode 6: Moving to spaCy v3",
"description": "In this new video series, data science instructor Vincent Warmerdam gets started with spaCy, an open-source library for Natural Language Processing in Python. His mission: building a system to automatically detect programming languages in large volumes of text. Follow his process from the first idea to a prototype all the way to data collection and training a statistical named entity recogntion model from scratch.",
"author": "Vincent Warmerdam",
"author_links": {
"twitter": "fishnets88",
"github": "koaning"
},
"youtube": "k77RrmMaKEI",
"category": ["videos"]
},
{
"type": "education",
"id": "video-spacy-irl-entity-linking",
@ -2803,9 +2821,9 @@
"id": "coreferee",
"title": "Coreferee",
"slogan": "Coreference resolution for multiple languages",
"github": "msg-systems/coreferee",
"url": "https://github.com/msg-systems/coreferee",
"description": "Coreferee is a pipeline plugin that performs coreference resolution for English, German and Polish. It is designed so that it is easy to add support for new languages and optimised for limited training data. It uses a mixture of neural networks and programmed rules. Please note you will need to [install models](https://github.com/msg-systems/coreferee#getting-started) before running the code example.",
"github": "explosion/coreferee",
"url": "https://github.com/explosion/coreferee",
"description": "Coreferee is a pipeline plugin that performs coreference resolution for English, French, German and Polish. It is designed so that it is easy to add support for new languages and optimised for limited training data. It uses a mixture of neural networks and programmed rules. Please note you will need to [install models](https://github.com/explosion/coreferee#getting-started) before running the code example.",
"pip": "coreferee",
"category": ["pipeline", "models", "standalone"],
"tags": ["coreference-resolution", "anaphora"],
@ -3212,7 +3230,7 @@
"",
"assert nlp.pipe_names == [\"tok2vec\", \"tagger\", \"syllables\", \"parser\", \"attribute_ruler\", \"lemmatizer\", \"ner\"]",
"doc = nlp(\"terribly long\")",
"data = [(token.text, token..syllables, token..syllables_count) for token in doc]",
"data = [(token.text, token._.syllables, token._.syllables_count) for token in doc]",
"assert data == [(\"terribly\", [\"ter\", \"ri\", \"bly\"], 3), (\"long\", [\"long\"], 1)]"
],
"thumb": "https://raw.githubusercontent.com/sloev/spacy-syllables/master/logo.png",

View File

@ -120,8 +120,8 @@ const AlertSpace = ({ nightly, legacy }) => {
}
const navAlert = (
<Link to="/usage/v3-2" hidden>
<strong>💥 Out now:</strong> spaCy v3.2
<Link to="/usage/v3-3" hidden>
<strong>💥 Out now:</strong> spaCy v3.3
</Link>
)

View File

@ -23,6 +23,8 @@ const CUDA = {
'11.2': 'cuda112',
'11.3': 'cuda113',
'11.4': 'cuda114',
'11.5': 'cuda115',
'11.6': 'cuda116',
}
const LANG_EXTRAS = ['ja'] // only for languages with models
@ -48,7 +50,7 @@ const QuickstartInstall = ({ id, title }) => {
const modelExtras = train ? selectedModels.filter(m => LANG_EXTRAS.includes(m)) : []
const apple = os === 'mac' && platform === 'arm'
const pipExtras = [
hardware === 'gpu' && cuda,
(hardware === 'gpu' && (platform !== 'arm' || os === 'linux')) && cuda,
train && 'transformers',
train && 'lookups',
apple && 'apple',