Update beam parser

This commit is contained in:
Matthew Honnibal 2017-08-16 18:25:49 -05:00
parent 4b1e7bd6d8
commit 0209a06b4e
3 changed files with 53 additions and 49 deletions

View File

@ -6,6 +6,7 @@ from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from thinc.extra.search cimport Beam
from thinc.extra.search import MaxViolation
from thinc.typedefs cimport hash_t, class_t
from thinc.extra.search cimport MaxViolation
from .transition_system cimport TransitionSystem, Transition
from .stateclass cimport StateClass
@ -45,6 +46,7 @@ cdef class ParserBeam(object):
cdef public object states
cdef public object golds
cdef public object beams
cdef public object dones
def __init__(self, TransitionSystem moves, states, golds,
int width=4, float density=0.001):
@ -61,6 +63,7 @@ cdef class ParserBeam(object):
st = <StateClass>beam.at(i)
st.c.offset = state.c.offset
self.beams.append(beam)
self.dones = [False] * len(self.beams)
def __dealloc__(self):
if self.beams is not None:
@ -70,7 +73,7 @@ cdef class ParserBeam(object):
@property
def is_done(self):
return all(b.is_done for b in self.beams)
return all(b.is_done or self.dones[i] for i, b in enumerate(self.beams))
def __getitem__(self, i):
return self.beams[i]
@ -81,19 +84,24 @@ cdef class ParserBeam(object):
def advance(self, scores, follow_gold=False):
cdef Beam beam
for i, beam in enumerate(self.beams):
if beam.is_done or not scores[i].size:
if beam.is_done or not scores[i].size or self.dones[i]:
continue
self._set_scores(beam, scores[i])
if self.golds is not None:
self._set_costs(beam, self.golds[i], follow_gold=follow_gold)
beam.advance(_transition_state, NULL, <void*>self.moves.c)
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
if beam.is_done:
if beam.is_done and self.golds is not None:
for j in range(beam.size):
if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings):
beam._states[j].loss = 0.0
elif beam._states[j].loss == 0.0:
beam._states[j].loss = 1.0
state = <StateClass>beam.at(j)
if state.is_final():
try:
if self.moves.is_gold_parse(state, self.golds[i]):
beam._states[j].loss = 0.0
elif beam._states[j].loss == 0.0:
beam._states[j].loss = 1.0
except NotImplementedError:
break
def _set_scores(self, Beam beam, float[:, ::1] scores):
cdef float* c_scores = &scores[0, 0]
@ -110,7 +118,6 @@ cdef class ParserBeam(object):
beam.scores[i][j] = 0
beam.costs[i][j] = 0
def _set_costs(self, Beam beam, GoldParse gold, int follow_gold=False):
for i in range(beam.size):
state = <StateClass>beam.at(i)
@ -122,21 +129,6 @@ cdef class ParserBeam(object):
beam.is_valid[i][j] = 0
def is_gold(StateClass state, GoldParse gold, strings):
predicted = set()
truth = set()
for i in range(gold.length):
if gold.cand_to_gold[i] is None:
continue
if state.safe_get(i).dep:
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
else:
predicted.add((i, state.H(i), 'ROOT'))
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
truth.add((id_, head, dep))
return truth == predicted
def get_token_ids(states, int n_tokens):
cdef StateClass state
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
@ -156,16 +148,19 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
state2vec, vec2scores, drop=0., sgd=None,
losses=None, int width=4, float density=0.001):
global nr_update
cdef MaxViolation violn
nr_update += 1
pbeam = ParserBeam(moves, states, golds,
width=width, density=density)
gbeam = ParserBeam(moves, states, golds,
width=width, density=0.0)
width=width, density=density)
cdef StateClass state
beam_maps = []
backprops = []
violns = [MaxViolation() for _ in range(len(states))]
for t in range(max_steps):
if pbeam.is_done and gbeam.is_done:
break
# The beam maps let us find the right row in the flattened scores
# arrays for each state. States are identified by (example id, history).
# We keep a different beam map for each step (since we'll have a flat
@ -197,12 +192,16 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
# Track the "maximum violation", to use in the update.
for i, violn in enumerate(violns):
violn.check_crf(pbeam[i], gbeam[i])
# Only make updates if we have non-gold states
histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns]
losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns]
states_d_scores = get_gradient(moves.n_moves, beam_maps,
histories, losses)
histories = []
losses = []
for i, violn in enumerate(violns):
if violn.cost < 1:
histories.append([])
losses.append([])
else:
histories.append(violn.p_hist + violn.g_hist)
losses.append(violn.p_probs + violn.g_probs)
states_d_scores = get_gradient(moves.n_moves, beam_maps, histories, losses)
return states_d_scores, backprops[:len(states_d_scores)]
@ -216,7 +215,9 @@ def get_states(pbeams, gbeams, beam_map, nr_update):
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
p_indices.append([])
g_indices.append([])
if pbeam.loss > 0 and pbeam.min_score > (gbeam.score + nr_update):
if pbeam.loss > 0 and pbeam.min_score > (gbeam.score + numpy.sqrt(nr_update)):
pbeams.dones[eg_id] = True
gbeams.dones[eg_id] = True
continue
for i in range(pbeam.size):
state = <StateClass>pbeam.at(i)
@ -261,21 +262,21 @@ def get_gradient(nr_class, beam_maps, histories, losses):
nr_step = 0
for eg_id, hists in enumerate(histories):
for loss, hist in zip(losses[eg_id], hists):
if abs(loss) >= 0.0001 and not numpy.isnan(loss):
if loss != 0.0 and not numpy.isnan(loss):
nr_step = max(nr_step, len(hist))
for i in range(nr_step):
grads.append(numpy.zeros((max(beam_maps[i].values())+1, nr_class), dtype='f'))
assert len(histories) == len(losses)
for eg_id, hists in enumerate(histories):
for loss, hist in zip(losses[eg_id], hists):
if abs(loss) < 0.0001 or numpy.isnan(loss):
if abs(loss) == 0.0 or numpy.isnan(loss):
continue
key = tuple([eg_id])
for j, clas in enumerate(hist):
i = beam_maps[j][key]
# In step j, at state i action clas
# resulted in loss
grads[j][i, clas] += loss / len(histories)
grads[j][i, clas] += loss
key = key + tuple([clas])
return grads

View File

@ -34,7 +34,6 @@ from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
from .stateclass cimport StateClass
from .parser cimport Parser
from ._beam_utils import is_gold
DEBUG = False
@ -108,7 +107,7 @@ cdef class BeamParser(Parser):
# The non-monotonic oracle makes it difficult to ensure final costs are
# correct. Therefore do final correction
for i in range(pred.size):
if is_gold(<StateClass>pred.at(i), gold_parse, self.moves.strings):
if self.moves.is_gold_parse(<StateClass>pred.at(i), gold_parse):
pred._states[i].loss = 0.0
elif pred._states[i].loss == 0.0:
pred._states[i].loss = 1.0
@ -214,7 +213,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
if not pred._states[i].is_done or pred._states[i].loss == 0:
continue
state = <StateClass>pred.at(i)
if is_gold(state, gold_parse, moves.strings) == True:
if moves.is_gold_parse(state, gold_parse) == True:
for dep in gold_parse.orig_annot:
print(dep[1], dep[3], dep[4])
print("Cost", pred._states[i].loss)
@ -228,7 +227,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio
if not gold._states[i].is_done:
continue
state = <StateClass>gold.at(i)
if is_gold(state, gold_parse, moves.strings) == False:
if moves.is_gold(state, gold_parse) == False:
print("Truth")
for dep in gold_parse.orig_annot:
print(dep[1], dep[3], dep[4])

View File

@ -38,6 +38,7 @@ from preshed.maps cimport map_get
from thinc.api import layerize, chain, noop, clone
from thinc.neural import Model, Affine, ReLu, Maxout
from thinc.neural._classes.batchnorm import BatchNorm as BN
from thinc.neural._classes.selu import SELU
from thinc.neural._classes.layernorm import LayerNorm
from thinc.neural.ops import NumpyOps, CupyOps
@ -258,7 +259,7 @@ cdef class Parser:
with Model.use_device('cpu'):
upper = chain(
clone(Residual(ReLu(hidden_width)), (depth-1)),
clone(Maxout(hidden_width), (depth-1)),
zero_init(Affine(nr_class, drop_factor=0.0))
)
# TODO: This is an unfortunate hack atm!
@ -321,6 +322,8 @@ cdef class Parser:
beam_width = self.cfg.get('beam_width', 1)
if beam_density is None:
beam_density = self.cfg.get('beam_density', 0.001)
if BEAM_PARSE:
beam_width = 16
cdef Beam beam
if beam_width == 1:
states = self.parse_batch([doc], [doc.tensor])
@ -349,7 +352,7 @@ cdef class Parser:
Yields (Doc): Documents, in order.
"""
if BEAM_PARSE:
beam_width = 8
beam_width = 16
cdef Doc doc
cdef Beam beam
for docs in cytoolz.partition_all(batch_size, docs):
@ -427,7 +430,7 @@ cdef class Parser:
next_step.push_back(st)
return states
def beam_parse(self, docs, tokvecses, int beam_width=8, float beam_density=0.001):
def beam_parse(self, docs, tokvecses, int beam_width=16, float beam_density=0.001):
cdef Beam beam
cdef np.ndarray scores
cdef Doc doc
@ -471,13 +474,13 @@ cdef class Parser:
for k in range(nr_class):
beam.scores[i][k] = c_scores[j * scores.shape[1] + k]
j += 1
beam.advance(_transition_state, NULL, <void*>self.moves.c)
beam.advance(_transition_state, _hash_state, <void*>self.moves.c)
beam.check_done(_check_final_state, NULL)
beams.append(beam)
return beams
def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None):
if BEAM_PARSE:
if BEAM_PARSE and numpy.random.random() >= 0.5:
return self.update_beam(docs_tokvecs, golds, drop=drop, sgd=sgd,
losses=losses)
if losses is not None and self.name not in losses:
@ -568,7 +571,7 @@ cdef class Parser:
states, tokvecs, golds,
state2vec, vec2scores,
drop, sgd, losses,
width=8)
width=16)
backprop_lower = []
for i, d_scores in enumerate(states_d_scores):
if losses is not None:
@ -633,9 +636,10 @@ cdef class Parser:
xp = get_array_module(d_tokvecs)
for ids, d_vector, bp_vector in backprops:
d_state_features = bp_vector(d_vector, sgd=sgd)
mask = (ids >= 0).reshape((ids.shape[0], ids.shape[1], 1))
self.model[0].ops.scatter_add(d_tokvecs, ids,
d_state_features * mask)
mask = ids >= 0
d_state_features *= mask.reshape(ids.shape + (1,))
self.model[0].ops.scatter_add(d_tokvecs, ids * mask,
d_state_features)
@property
def move_names(self):
@ -651,7 +655,7 @@ cdef class Parser:
lower, stream, drop=dropout)
return state2vec, upper
nr_feature = 13
nr_feature = 8
def get_token_ids(self, states):
cdef StateClass state