mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 07:57:35 +03:00 
			
		
		
		
	Update beam parser
This commit is contained in:
		
							parent
							
								
									4b1e7bd6d8
								
							
						
					
					
						commit
						0209a06b4e
					
				|  | @ -6,6 +6,7 @@ from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF | |||
| from thinc.extra.search cimport Beam | ||||
| from thinc.extra.search import MaxViolation | ||||
| from thinc.typedefs cimport hash_t, class_t | ||||
| from thinc.extra.search cimport MaxViolation | ||||
| 
 | ||||
| from .transition_system cimport TransitionSystem, Transition | ||||
| from .stateclass cimport StateClass | ||||
|  | @ -45,6 +46,7 @@ cdef class ParserBeam(object): | |||
|     cdef public object states | ||||
|     cdef public object golds | ||||
|     cdef public object beams | ||||
|     cdef public object dones | ||||
| 
 | ||||
|     def __init__(self, TransitionSystem moves, states, golds, | ||||
|             int width=4, float density=0.001): | ||||
|  | @ -61,6 +63,7 @@ cdef class ParserBeam(object): | |||
|                 st = <StateClass>beam.at(i) | ||||
|                 st.c.offset = state.c.offset | ||||
|             self.beams.append(beam) | ||||
|         self.dones = [False] * len(self.beams) | ||||
| 
 | ||||
|     def __dealloc__(self): | ||||
|         if self.beams is not None: | ||||
|  | @ -70,7 +73,7 @@ cdef class ParserBeam(object): | |||
| 
 | ||||
|     @property | ||||
|     def is_done(self): | ||||
|         return all(b.is_done for b in self.beams) | ||||
|         return all(b.is_done or self.dones[i] for i, b in enumerate(self.beams)) | ||||
| 
 | ||||
|     def __getitem__(self, i): | ||||
|         return self.beams[i] | ||||
|  | @ -81,19 +84,24 @@ cdef class ParserBeam(object): | |||
|     def advance(self, scores, follow_gold=False): | ||||
|         cdef Beam beam | ||||
|         for i, beam in enumerate(self.beams): | ||||
|             if beam.is_done or not scores[i].size: | ||||
|             if beam.is_done or not scores[i].size or self.dones[i]: | ||||
|                 continue | ||||
|             self._set_scores(beam, scores[i]) | ||||
|             if self.golds is not None: | ||||
|                 self._set_costs(beam, self.golds[i], follow_gold=follow_gold) | ||||
|             beam.advance(_transition_state, NULL, <void*>self.moves.c) | ||||
|             beam.advance(_transition_state, _hash_state, <void*>self.moves.c) | ||||
|             beam.check_done(_check_final_state, NULL) | ||||
|             if beam.is_done: | ||||
|             if beam.is_done and self.golds is not None: | ||||
|                 for j in range(beam.size): | ||||
|                     if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings): | ||||
|                     state = <StateClass>beam.at(j) | ||||
|                     if state.is_final(): | ||||
|                         try: | ||||
|                             if self.moves.is_gold_parse(state, self.golds[i]): | ||||
|                                 beam._states[j].loss = 0.0 | ||||
|                             elif beam._states[j].loss == 0.0: | ||||
|                                 beam._states[j].loss = 1.0 | ||||
|                         except NotImplementedError: | ||||
|                             break | ||||
| 
 | ||||
|     def _set_scores(self, Beam beam, float[:, ::1] scores): | ||||
|         cdef float* c_scores = &scores[0, 0] | ||||
|  | @ -110,7 +118,6 @@ cdef class ParserBeam(object): | |||
|                     beam.scores[i][j] = 0 | ||||
|                     beam.costs[i][j] = 0 | ||||
| 
 | ||||
| 
 | ||||
|     def _set_costs(self, Beam beam, GoldParse gold, int follow_gold=False): | ||||
|         for i in range(beam.size): | ||||
|             state = <StateClass>beam.at(i) | ||||
|  | @ -122,21 +129,6 @@ cdef class ParserBeam(object): | |||
|                             beam.is_valid[i][j] = 0 | ||||
| 
 | ||||
| 
 | ||||
| def is_gold(StateClass state, GoldParse gold, strings): | ||||
|     predicted = set() | ||||
|     truth = set() | ||||
|     for i in range(gold.length): | ||||
|         if gold.cand_to_gold[i] is None: | ||||
|             continue | ||||
|         if state.safe_get(i).dep: | ||||
|             predicted.add((i, state.H(i), strings[state.safe_get(i).dep])) | ||||
|         else: | ||||
|             predicted.add((i, state.H(i), 'ROOT')) | ||||
|         id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]] | ||||
|         truth.add((id_, head, dep)) | ||||
|     return truth == predicted | ||||
| 
 | ||||
| 
 | ||||
| def get_token_ids(states, int n_tokens): | ||||
|     cdef StateClass state | ||||
|     cdef np.ndarray ids = numpy.zeros((len(states), n_tokens), | ||||
|  | @ -156,16 +148,19 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps, | |||
|                 state2vec, vec2scores, drop=0., sgd=None, | ||||
|                 losses=None, int width=4, float density=0.001): | ||||
|     global nr_update | ||||
|     cdef MaxViolation violn | ||||
|     nr_update += 1 | ||||
|     pbeam = ParserBeam(moves, states, golds, | ||||
|                        width=width, density=density) | ||||
|     gbeam = ParserBeam(moves, states, golds, | ||||
|                        width=width, density=0.0) | ||||
|                        width=width, density=density) | ||||
|     cdef StateClass state | ||||
|     beam_maps = [] | ||||
|     backprops = [] | ||||
|     violns = [MaxViolation() for _ in range(len(states))] | ||||
|     for t in range(max_steps): | ||||
|         if pbeam.is_done and gbeam.is_done: | ||||
|             break | ||||
|         # The beam maps let us find the right row in the flattened scores | ||||
|         # arrays for each state. States are identified by (example id, history). | ||||
|         # We keep a different beam map for each step (since we'll have a flat | ||||
|  | @ -197,12 +192,16 @@ def update_beam(TransitionSystem moves, int nr_feature, int max_steps, | |||
|         # Track the "maximum violation", to use in the update. | ||||
|         for i, violn in enumerate(violns): | ||||
|             violn.check_crf(pbeam[i], gbeam[i]) | ||||
| 
 | ||||
|     # Only make updates if we have non-gold states | ||||
|     histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns] | ||||
|     losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns] | ||||
|     states_d_scores = get_gradient(moves.n_moves, beam_maps, | ||||
|                                    histories, losses) | ||||
|     histories = [] | ||||
|     losses = [] | ||||
|     for i, violn in enumerate(violns): | ||||
|         if violn.cost < 1: | ||||
|             histories.append([]) | ||||
|             losses.append([]) | ||||
|         else: | ||||
|             histories.append(violn.p_hist + violn.g_hist) | ||||
|             losses.append(violn.p_probs + violn.g_probs) | ||||
|     states_d_scores = get_gradient(moves.n_moves, beam_maps, histories, losses) | ||||
|     return states_d_scores, backprops[:len(states_d_scores)] | ||||
| 
 | ||||
| 
 | ||||
|  | @ -216,7 +215,9 @@ def get_states(pbeams, gbeams, beam_map, nr_update): | |||
|     for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)): | ||||
|         p_indices.append([]) | ||||
|         g_indices.append([]) | ||||
|         if pbeam.loss > 0 and pbeam.min_score > (gbeam.score + nr_update): | ||||
|         if pbeam.loss > 0 and pbeam.min_score > (gbeam.score + numpy.sqrt(nr_update)): | ||||
|             pbeams.dones[eg_id] = True | ||||
|             gbeams.dones[eg_id] = True | ||||
|             continue | ||||
|         for i in range(pbeam.size): | ||||
|             state = <StateClass>pbeam.at(i) | ||||
|  | @ -261,21 +262,21 @@ def get_gradient(nr_class, beam_maps, histories, losses): | |||
|     nr_step = 0 | ||||
|     for eg_id, hists in enumerate(histories): | ||||
|         for loss, hist in zip(losses[eg_id], hists): | ||||
|             if abs(loss) >= 0.0001 and not numpy.isnan(loss): | ||||
|             if loss != 0.0 and not numpy.isnan(loss): | ||||
|                 nr_step = max(nr_step, len(hist)) | ||||
|     for i in range(nr_step): | ||||
|         grads.append(numpy.zeros((max(beam_maps[i].values())+1, nr_class), dtype='f')) | ||||
|     assert len(histories) == len(losses) | ||||
|     for eg_id, hists in enumerate(histories): | ||||
|         for loss, hist in zip(losses[eg_id], hists): | ||||
|             if abs(loss) < 0.0001 or numpy.isnan(loss): | ||||
|             if abs(loss) == 0.0 or numpy.isnan(loss): | ||||
|                 continue | ||||
|             key = tuple([eg_id]) | ||||
|             for j, clas in enumerate(hist): | ||||
|                 i = beam_maps[j][key] | ||||
|                 # In step j, at state i action clas | ||||
|                 # resulted in loss | ||||
|                 grads[j][i, clas] += loss / len(histories) | ||||
|                 grads[j][i, clas] += loss | ||||
|                 key = key + tuple([clas]) | ||||
|     return grads | ||||
| 
 | ||||
|  |  | |||
|  | @ -34,7 +34,6 @@ from ._parse_features cimport CONTEXT_SIZE | |||
| from ._parse_features cimport fill_context | ||||
| from .stateclass cimport StateClass | ||||
| from .parser cimport Parser | ||||
| from ._beam_utils import is_gold | ||||
| 
 | ||||
| 
 | ||||
| DEBUG = False | ||||
|  | @ -108,7 +107,7 @@ cdef class BeamParser(Parser): | |||
|             # The non-monotonic oracle makes it difficult to ensure final costs are | ||||
|             # correct. Therefore do final correction | ||||
|             for i in range(pred.size): | ||||
|                 if is_gold(<StateClass>pred.at(i), gold_parse, self.moves.strings): | ||||
|                 if self.moves.is_gold_parse(<StateClass>pred.at(i), gold_parse): | ||||
|                     pred._states[i].loss = 0.0 | ||||
|                 elif pred._states[i].loss == 0.0: | ||||
|                     pred._states[i].loss = 1.0 | ||||
|  | @ -214,7 +213,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio | |||
|         if not pred._states[i].is_done or pred._states[i].loss == 0: | ||||
|             continue | ||||
|         state = <StateClass>pred.at(i) | ||||
|         if is_gold(state, gold_parse, moves.strings) == True: | ||||
|         if moves.is_gold_parse(state, gold_parse) == True: | ||||
|             for dep in gold_parse.orig_annot: | ||||
|                 print(dep[1], dep[3], dep[4]) | ||||
|             print("Cost", pred._states[i].loss) | ||||
|  | @ -228,7 +227,7 @@ def _check_train_integrity(Beam pred, Beam gold, GoldParse gold_parse, Transitio | |||
|         if not gold._states[i].is_done: | ||||
|             continue | ||||
|         state = <StateClass>gold.at(i) | ||||
|         if is_gold(state, gold_parse, moves.strings) == False: | ||||
|         if moves.is_gold(state, gold_parse) == False: | ||||
|             print("Truth") | ||||
|             for dep in gold_parse.orig_annot: | ||||
|                 print(dep[1], dep[3], dep[4]) | ||||
|  |  | |||
|  | @ -38,6 +38,7 @@ from preshed.maps cimport map_get | |||
| 
 | ||||
| from thinc.api import layerize, chain, noop, clone | ||||
| from thinc.neural import Model, Affine, ReLu, Maxout | ||||
| from thinc.neural._classes.batchnorm import BatchNorm as BN | ||||
| from thinc.neural._classes.selu import SELU | ||||
| from thinc.neural._classes.layernorm import LayerNorm | ||||
| from thinc.neural.ops import NumpyOps, CupyOps | ||||
|  | @ -258,7 +259,7 @@ cdef class Parser: | |||
| 
 | ||||
|         with Model.use_device('cpu'): | ||||
|             upper = chain( | ||||
|                 clone(Residual(ReLu(hidden_width)), (depth-1)), | ||||
|                 clone(Maxout(hidden_width), (depth-1)), | ||||
|                 zero_init(Affine(nr_class, drop_factor=0.0)) | ||||
|             ) | ||||
|         # TODO: This is an unfortunate hack atm! | ||||
|  | @ -321,6 +322,8 @@ cdef class Parser: | |||
|             beam_width = self.cfg.get('beam_width', 1) | ||||
|         if beam_density is None: | ||||
|             beam_density = self.cfg.get('beam_density', 0.001) | ||||
|         if BEAM_PARSE: | ||||
|             beam_width = 16 | ||||
|         cdef Beam beam | ||||
|         if beam_width == 1: | ||||
|             states = self.parse_batch([doc], [doc.tensor]) | ||||
|  | @ -349,7 +352,7 @@ cdef class Parser: | |||
|         Yields (Doc): Documents, in order. | ||||
|         """ | ||||
|         if BEAM_PARSE: | ||||
|             beam_width = 8 | ||||
|             beam_width = 16 | ||||
|         cdef Doc doc | ||||
|         cdef Beam beam | ||||
|         for docs in cytoolz.partition_all(batch_size, docs): | ||||
|  | @ -427,7 +430,7 @@ cdef class Parser: | |||
|                     next_step.push_back(st) | ||||
|         return states | ||||
| 
 | ||||
|     def beam_parse(self, docs, tokvecses, int beam_width=8, float beam_density=0.001): | ||||
|     def beam_parse(self, docs, tokvecses, int beam_width=16, float beam_density=0.001): | ||||
|         cdef Beam beam | ||||
|         cdef np.ndarray scores | ||||
|         cdef Doc doc | ||||
|  | @ -471,13 +474,13 @@ cdef class Parser: | |||
|                         for k in range(nr_class): | ||||
|                             beam.scores[i][k] = c_scores[j * scores.shape[1] + k] | ||||
|                         j += 1 | ||||
|                 beam.advance(_transition_state, NULL, <void*>self.moves.c) | ||||
|                 beam.advance(_transition_state, _hash_state, <void*>self.moves.c) | ||||
|                 beam.check_done(_check_final_state, NULL) | ||||
|             beams.append(beam) | ||||
|         return beams | ||||
| 
 | ||||
|     def update(self, docs_tokvecs, golds, drop=0., sgd=None, losses=None): | ||||
|         if BEAM_PARSE: | ||||
|         if BEAM_PARSE and numpy.random.random() >= 0.5: | ||||
|             return self.update_beam(docs_tokvecs, golds, drop=drop, sgd=sgd, | ||||
|                                     losses=losses) | ||||
|         if losses is not None and self.name not in losses: | ||||
|  | @ -568,7 +571,7 @@ cdef class Parser: | |||
|                                         states, tokvecs, golds, | ||||
|                                         state2vec, vec2scores, | ||||
|                                         drop, sgd, losses, | ||||
|                                         width=8) | ||||
|                                         width=16) | ||||
|         backprop_lower = [] | ||||
|         for i, d_scores in enumerate(states_d_scores): | ||||
|             if losses is not None: | ||||
|  | @ -633,9 +636,10 @@ cdef class Parser: | |||
|         xp = get_array_module(d_tokvecs) | ||||
|         for ids, d_vector, bp_vector in backprops: | ||||
|             d_state_features = bp_vector(d_vector, sgd=sgd) | ||||
|             mask = (ids >= 0).reshape((ids.shape[0], ids.shape[1], 1)) | ||||
|             self.model[0].ops.scatter_add(d_tokvecs, ids, | ||||
|                 d_state_features * mask) | ||||
|             mask = ids >= 0 | ||||
|             d_state_features *= mask.reshape(ids.shape + (1,)) | ||||
|             self.model[0].ops.scatter_add(d_tokvecs, ids * mask, | ||||
|                 d_state_features) | ||||
| 
 | ||||
|     @property | ||||
|     def move_names(self): | ||||
|  | @ -651,7 +655,7 @@ cdef class Parser: | |||
|                         lower, stream, drop=dropout) | ||||
|         return state2vec, upper | ||||
| 
 | ||||
|     nr_feature = 13 | ||||
|     nr_feature = 8 | ||||
| 
 | ||||
|     def get_token_ids(self, states): | ||||
|         cdef StateClass state | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user