Merge branch 'master' into spacy.io

This commit is contained in:
Ines Montani 2019-11-21 19:23:19 +01:00
commit 02de21d8b4
31 changed files with 893 additions and 126 deletions

106
.github/contributors/GuiGel.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Guillaume Gelabert |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-15 |
| GitHub username | GuiGel |
| Website (optional) | |

106
.github/contributors/erip.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI GmbH](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Elijah Rippeth |
| Company name (if applicable) | |
| Title or role (if applicable) | |
| Date | 2019-11-16 |
| GitHub username | erip |
| Website (optional) | |

View File

@ -50,15 +50,16 @@ jobs:
Python36Mac:
imageName: 'macos-10.13'
python.version: '3.6'
Python37Linux:
imageName: 'ubuntu-16.04'
python.version: '3.7'
Python37Windows:
imageName: 'vs2017-win2016'
python.version: '3.7'
Python37Mac:
imageName: 'macos-10.13'
python.version: '3.7'
# Don't test on 3.7 for now to speed up builds
# Python37Linux:
# imageName: 'ubuntu-16.04'
# python.version: '3.7'
# Python37Windows:
# imageName: 'vs2017-win2016'
# python.version: '3.7'
# Python37Mac:
# imageName: 'macos-10.13'
# python.version: '3.7'
Python38Linux:
imageName: 'ubuntu-16.04'
python.version: '3.8'

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "2.2.2"
__version__ = "2.2.3"
__release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -529,6 +529,7 @@ class Errors(object):
E185 = ("Received invalid attribute in component attribute declaration: "
"{obj}.{attr}\nAttribute '{attr}' does not exist on {obj}.")
E186 = ("'{tok_a}' and '{tok_b}' are different texts.")
E187 = ("Only unicode strings are supported as labels.")
@add_codes

View File

@ -31,6 +31,10 @@ _latin_u_supplement = r"\u00C0-\u00D6\u00D8-\u00DE"
_latin_l_supplement = r"\u00DF-\u00F6\u00F8-\u00FF"
_latin_supplement = r"\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF"
_hangul_syllables = r"\uAC00-\uD7AF"
_hangul_jamo = r"\u1100-\u11FF"
_hangul = _hangul_syllables + _hangul_jamo
# letters with diacritics - Catalan, Czech, Latin, Latvian, Lithuanian, Polish, Slovak, Turkish, Welsh
_latin_u_extendedA = (
r"\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C"
@ -202,7 +206,15 @@ _upper = LATIN_UPPER + _russian_upper + _tatar_upper + _greek_upper + _ukrainian
_lower = LATIN_LOWER + _russian_lower + _tatar_lower + _greek_lower + _ukrainian_lower
_uncased = (
_bengali + _hebrew + _persian + _sinhala + _hindi + _kannada + _tamil + _telugu
_bengali
+ _hebrew
+ _persian
+ _sinhala
+ _hindi
+ _kannada
+ _tamil
+ _telugu
+ _hangul
)
ALPHA = group_chars(LATIN + _russian + _tatar + _greek + _ukrainian + _uncased)

View File

@ -0,0 +1,67 @@
# coding: utf8
from __future__ import unicode_literals
from ...attrs import LIKE_NUM
_num_words = [
"",
"",
# Native Korean number system
"하나",
"",
"",
"",
"다섯",
"여섯",
"일곱",
"여덟",
"아홉",
"",
"스물",
"서른",
"마흔",
"",
"예순",
"일흔",
"여든",
"아흔",
# Sino-Korean number system
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"십만",
"백만",
"천만",
"일억",
"십억",
"백억",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if any(char.lower() in _num_words for char in text):
return True
return False
LEX_ATTRS = {LIKE_NUM: like_num}

View File

@ -6,9 +6,7 @@ from ...symbols import ORTH, LEMMA, NORM
# TODO
# treat other apostrophes within words as part of the word: [op d'mannst], [fir d'éischt] (= exceptions)
_exc = {
}
_exc = {}
# translate / delete what is not necessary
for exc_data in [

View File

@ -14,6 +14,7 @@ from .tag_map import TAG_MAP
def try_jieba_import(use_jieba):
try:
import jieba
return jieba
except ImportError:
if use_jieba:
@ -34,7 +35,9 @@ class ChineseTokenizer(DummyTokenizer):
def __call__(self, text):
# use jieba
if self.use_jieba:
jieba_words = list([x for x in self.jieba_seg.cut(text, cut_all=False) if x])
jieba_words = list(
[x for x in self.jieba_seg.cut(text, cut_all=False) if x]
)
words = [jieba_words[0]]
spaces = [False]
for i in range(1, len(jieba_words)):

View File

@ -292,13 +292,14 @@ class EntityRuler(object):
self.add_patterns(patterns)
else:
cfg = {}
deserializers = {
deserializers_patterns = {
"patterns": lambda p: self.add_patterns(
srsly.read_jsonl(p.with_suffix(".jsonl"))
),
"cfg": lambda p: cfg.update(srsly.read_json(p)),
)}
deserializers_cfg = {
"cfg": lambda p: cfg.update(srsly.read_json(p))
}
from_disk(path, deserializers, {})
from_disk(path, deserializers_cfg, {})
self.overwrite = cfg.get("overwrite", False)
self.phrase_matcher_attr = cfg.get("phrase_matcher_attr")
self.ent_id_sep = cfg.get("ent_id_sep", DEFAULT_ENT_ID_SEP)
@ -307,6 +308,7 @@ class EntityRuler(object):
self.phrase_matcher = PhraseMatcher(
self.nlp.vocab, attr=self.phrase_matcher_attr
)
from_disk(path, deserializers_patterns, {})
return self
def to_disk(self, path, **kwargs):

View File

@ -13,6 +13,7 @@ from thinc.misc import LayerNorm
from thinc.neural.util import to_categorical
from thinc.neural.util import get_array_module
from ..compat import basestring_
from ..tokens.doc cimport Doc
from ..syntax.nn_parser cimport Parser
from ..syntax.ner cimport BiluoPushDown
@ -547,6 +548,8 @@ class Tagger(Pipe):
return build_tagger_model(n_tags, **cfg)
def add_label(self, label, values=None):
if not isinstance(label, basestring_):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model not in (True, False, None):
@ -1016,6 +1019,8 @@ class TextCategorizer(Pipe):
return float(mean_square_error), d_scores
def add_label(self, label):
if not isinstance(label, basestring_):
raise ValueError(Errors.E187)
if label in self.labels:
return 0
if self.model not in (None, True, False):

View File

@ -271,7 +271,9 @@ class Scorer(object):
self.labelled_per_dep[token.dep_.lower()] = PRFScore()
if token.dep_.lower() not in cand_deps_per_dep:
cand_deps_per_dep[token.dep_.lower()] = set()
cand_deps_per_dep[token.dep_.lower()].add((gold_i, gold_head, token.dep_.lower()))
cand_deps_per_dep[token.dep_.lower()].add(
(gold_i, gold_head, token.dep_.lower())
)
if "-" not in [token[-1] for token in gold.orig_annot]:
# Find all NER labels in gold and doc
ent_labels = set([x[0] for x in gold_ents] + [k.label_ for k in doc.ents])
@ -304,7 +306,9 @@ class Scorer(object):
self.tags.score_set(cand_tags, gold_tags)
self.labelled.score_set(cand_deps, gold_deps)
for dep in self.labelled_per_dep:
self.labelled_per_dep[dep].score_set(cand_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set()))
self.labelled_per_dep[dep].score_set(
cand_deps_per_dep.get(dep, set()), gold_deps_per_dep.get(dep, set())
)
self.unlabelled.score_set(
set(item[:2] for item in cand_deps), set(item[:2] for item in gold_deps)
)

View File

@ -42,11 +42,17 @@ cdef WeightsC get_c_weights(model) except *:
cdef precompute_hiddens state2vec = model.state2vec
output.feat_weights = state2vec.get_feat_weights()
output.feat_bias = <const float*>state2vec.bias.data
cdef np.ndarray vec2scores_W = model.vec2scores.W
cdef np.ndarray vec2scores_b = model.vec2scores.b
cdef np.ndarray vec2scores_W
cdef np.ndarray vec2scores_b
if model.vec2scores is None:
output.hidden_weights = NULL
output.hidden_bias = NULL
else:
vec2scores_W = model.vec2scores.W
vec2scores_b = model.vec2scores.b
output.hidden_weights = <const float*>vec2scores_W.data
output.hidden_bias = <const float*>vec2scores_b.data
cdef np.ndarray class_mask = model._class_mask
output.hidden_weights = <const float*>vec2scores_W.data
output.hidden_bias = <const float*>vec2scores_b.data
output.seen_classes = <const float*>class_mask.data
return output
@ -54,7 +60,10 @@ cdef WeightsC get_c_weights(model) except *:
cdef SizesC get_c_sizes(model, int batch_size) except *:
cdef SizesC output
output.states = batch_size
output.classes = model.vec2scores.nO
if model.vec2scores is None:
output.classes = model.state2vec.nO
else:
output.classes = model.vec2scores.nO
output.hiddens = model.state2vec.nO
output.pieces = model.state2vec.nP
output.feats = model.state2vec.nF
@ -105,11 +114,12 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
cdef void predict_states(ActivationsC* A, StateC** states,
const WeightsC* W, SizesC n) nogil:
cdef double one = 1.0
resize_activations(A, n)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
for i in range(n.states):
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
sum_state_features(A.unmaxed,
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
for i in range(n.states):
@ -120,18 +130,20 @@ cdef void predict_states(ActivationsC* A, StateC** states,
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
memset(A.scores, 0, n.states * n.classes * sizeof(float))
cdef double one = 1.0
# Compute hidden-to-output
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
n.states, n.classes, n.hiddens, one,
<float*>A.hiddens, n.hiddens, 1,
<float*>W.hidden_weights, n.hiddens, 1,
one,
<float*>A.scores, n.classes, 1)
# Add bias
for i in range(n.states):
VecVec.add_i(&A.scores[i*n.classes],
W.hidden_bias, 1., n.classes)
if W.hidden_weights == NULL:
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
else:
# Compute hidden-to-output
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
n.states, n.classes, n.hiddens, one,
<float*>A.hiddens, n.hiddens, 1,
<float*>W.hidden_weights, n.hiddens, 1,
one,
<float*>A.scores, n.classes, 1)
# Add bias
for i in range(n.states):
VecVec.add_i(&A.scores[i*n.classes],
W.hidden_bias, 1., n.classes)
# Set unseen classes to minimum value
i = 0
min_ = A.scores[0]
@ -219,7 +231,9 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
class ParserModel(Model):
def __init__(self, tok2vec, lower_model, upper_model, unseen_classes=None):
Model.__init__(self)
self._layers = [tok2vec, lower_model, upper_model]
self._layers = [tok2vec, lower_model]
if upper_model is not None:
self._layers.append(upper_model)
self.unseen_classes = set()
if unseen_classes:
for class_ in unseen_classes:
@ -234,6 +248,8 @@ class ParserModel(Model):
return step_model, finish_parser_update
def resize_output(self, new_output):
if len(self._layers) == 2:
return
if new_output == self.upper.nO:
return
smaller = self.upper
@ -275,12 +291,24 @@ class ParserModel(Model):
class ParserStepModel(Model):
def __init__(self, docs, layers, unseen_classes=None, drop=0.):
self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop)
if layers[1].nP >= 2:
activation = "maxout"
elif len(layers) == 2:
activation = None
else:
activation = "relu"
self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1],
drop=drop)
self.vec2scores = layers[-1]
self.cuda_stream = util.get_cuda_stream()
activation=activation, drop=drop)
if len(layers) == 3:
self.vec2scores = layers[-1]
else:
self.vec2scores = None
self.cuda_stream = util.get_cuda_stream(non_blocking=True)
self.backprops = []
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
if self.vec2scores is None:
self._class_mask = numpy.zeros((self.state2vec.nO,), dtype='f')
else:
self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f')
self._class_mask.fill(1)
if unseen_classes is not None:
for class_ in unseen_classes:
@ -302,10 +330,15 @@ class ParserStepModel(Model):
def begin_update(self, states, drop=0.):
token_ids = self.get_token_ids(states)
vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0)
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
if mask is not None:
vector *= mask
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
if self.vec2scores is not None:
mask = self.vec2scores.ops.get_dropout_mask(vector.shape, drop)
if mask is not None:
vector *= mask
scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop)
else:
scores = NumpyOps().asarray(vector)
get_d_vector = lambda d_scores, sgd=None: d_scores
mask = None
# If the class is unseen, make sure its score is minimum
scores[:, self._class_mask == 0] = numpy.nanmin(scores)
@ -342,12 +375,12 @@ class ParserStepModel(Model):
return ids
def make_updates(self, sgd):
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
# Add a padding vector to the d_tokvecs gradient, so that missing
# values don't affect the real gradient.
d_tokvecs = self.ops.allocate((self.tokvecs.shape[0]+1, self.tokvecs.shape[1]))
# Tells CUDA to block, so our async copies complete.
if self.cuda_stream is not None:
self.cuda_stream.synchronize()
for ids, d_vector, bp_vector in self.backprops:
d_state_features = bp_vector((d_vector, ids), sgd=sgd)
ids = ids.flatten()
@ -385,9 +418,10 @@ cdef class precompute_hiddens:
cdef np.ndarray bias
cdef object _cuda_stream
cdef object _bp_hiddens
cdef object activation
def __init__(self, batch_size, tokvecs, lower_model, cuda_stream=None,
drop=0.):
activation="maxout", drop=0.):
gpu_cached, bp_features = lower_model.begin_update(tokvecs, drop=drop)
cdef np.ndarray cached
if not isinstance(gpu_cached, numpy.ndarray):
@ -405,6 +439,8 @@ cdef class precompute_hiddens:
self.nP = getattr(lower_model, 'nP', 1)
self.nO = cached.shape[2]
self.ops = lower_model.ops
assert activation in (None, "relu", "maxout")
self.activation = activation
self._is_synchronized = False
self._cuda_stream = cuda_stream
self._cached = cached
@ -417,7 +453,7 @@ cdef class precompute_hiddens:
return <float*>self._cached.data
def __call__(self, X):
return self.begin_update(X)[0]
return self.begin_update(X, drop=None)[0]
def begin_update(self, token_ids, drop=0.):
cdef np.ndarray state_vector = numpy.zeros(
@ -450,28 +486,35 @@ cdef class precompute_hiddens:
else:
ops = CupyOps()
if self.nP == 1:
state_vector = state_vector.reshape(state_vector.shape[:-1])
mask = state_vector >= 0.
state_vector *= mask
else:
if self.activation == "maxout":
state_vector, mask = ops.maxout(state_vector)
else:
state_vector = state_vector.reshape(state_vector.shape[:-1])
if self.activation == "relu":
mask = state_vector >= 0.
state_vector *= mask
else:
mask = None
def backprop_nonlinearity(d_best, sgd=None):
if isinstance(d_best, numpy.ndarray):
ops = NumpyOps()
else:
ops = CupyOps()
mask_ = ops.asarray(mask)
if mask is not None:
mask_ = ops.asarray(mask)
# This will usually be on GPU
d_best = ops.asarray(d_best)
# Fix nans (which can occur from unseen classes.)
d_best[ops.xp.isnan(d_best)] = 0.
if self.nP == 1:
if self.activation == "maxout":
mask_ = ops.asarray(mask)
return ops.backprop_maxout(d_best, mask_, self.nP)
elif self.activation == "relu":
mask_ = ops.asarray(mask)
d_best *= mask_
d_best = d_best.reshape((d_best.shape + (1,)))
return d_best
else:
return ops.backprop_maxout(d_best, mask_, self.nP)
return d_best.reshape((d_best.shape + (1,)))
return state_vector, backprop_nonlinearity

View File

@ -100,10 +100,30 @@ cdef cppclass StateC:
free(this.shifted - PADDING)
void set_context_tokens(int* ids, int n) nogil:
if n == 2:
if n == 1:
if this.B(0) >= 0:
ids[0] = this.B(0)
else:
ids[0] = -1
elif n == 2:
ids[0] = this.B(0)
ids[1] = this.S(0)
if n == 8:
elif n == 3:
if this.B(0) >= 0:
ids[0] = this.B(0)
else:
ids[0] = -1
# First word of entity, if any
if this.entity_is_open():
ids[1] = this.E(0)
else:
ids[1] = -1
# Last word of entity, if within entity
if ids[0] == -1 or ids[1] == -1:
ids[2] = -1
else:
ids[2] = ids[0] - 1
elif n == 8:
ids[0] = this.B(0)
ids[1] = this.B(1)
ids[2] = this.S(0)

View File

@ -22,7 +22,7 @@ from thinc.extra.search cimport Beam
from thinc.api import chain, clone
from thinc.v2v import Model, Maxout, Affine
from thinc.misc import LayerNorm
from thinc.neural.ops import CupyOps
from thinc.neural.ops import NumpyOps, CupyOps
from thinc.neural.util import get_array_module
from thinc.linalg cimport Vec, VecVec
import srsly
@ -61,13 +61,17 @@ cdef class Parser:
t2v_pieces = util.env_opt('cnn_maxout_pieces', cfg.get('cnn_maxout_pieces', 3))
bilstm_depth = util.env_opt('bilstm_depth', cfg.get('bilstm_depth', 0))
self_attn_depth = util.env_opt('self_attn_depth', cfg.get('self_attn_depth', 0))
if depth != 1:
nr_feature_tokens = cfg.get("nr_feature_tokens", cls.nr_feature)
if depth not in (0, 1):
raise ValueError(TempErrors.T004.format(value=depth))
parser_maxout_pieces = util.env_opt('parser_maxout_pieces',
cfg.get('maxout_pieces', 2))
token_vector_width = util.env_opt('token_vector_width',
cfg.get('token_vector_width', 96))
hidden_width = util.env_opt('hidden_width', cfg.get('hidden_width', 64))
if depth == 0:
hidden_width = nr_class
parser_maxout_pieces = 1
embed_size = util.env_opt('embed_size', cfg.get('embed_size', 2000))
pretrained_vectors = cfg.get('pretrained_vectors', None)
tok2vec = Tok2Vec(token_vector_width, embed_size,
@ -80,16 +84,19 @@ cdef class Parser:
tok2vec = chain(tok2vec, flatten)
tok2vec.nO = token_vector_width
lower = PrecomputableAffine(hidden_width,
nF=cls.nr_feature, nI=token_vector_width,
nF=nr_feature_tokens, nI=token_vector_width,
nP=parser_maxout_pieces)
lower.nP = parser_maxout_pieces
with Model.use_device('cpu'):
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
upper.W *= 0
if depth == 1:
with Model.use_device('cpu'):
upper = Affine(nr_class, hidden_width, drop_factor=0.0)
upper.W *= 0
else:
upper = None
cfg = {
'nr_class': nr_class,
'nr_feature_tokens': nr_feature_tokens,
'hidden_depth': depth,
'token_vector_width': token_vector_width,
'hidden_width': hidden_width,
@ -133,6 +140,7 @@ cdef class Parser:
if 'beam_update_prob' not in cfg:
cfg['beam_update_prob'] = util.env_opt('beam_update_prob', 1.0)
cfg.setdefault('cnn_maxout_pieces', 3)
cfg.setdefault("nr_feature_tokens", self.nr_feature)
self.cfg = cfg
self.model = model
self._multitasks = []
@ -299,7 +307,7 @@ cdef class Parser:
token_ids = numpy.zeros((len(docs) * beam_width, self.nr_feature),
dtype='i', order='C')
cdef int* c_ids
cdef int nr_feature = self.nr_feature
cdef int nr_feature = self.cfg["nr_feature_tokens"]
cdef int n_states
model = self.model(docs)
todo = [beam for beam in beams if not beam.is_done]
@ -502,7 +510,7 @@ cdef class Parser:
self.moves.preprocess_gold(gold)
model, finish_update = self.model.begin_update(docs, drop=drop)
states_d_scores, backprops, beams = _beam_utils.update_beam(
self.moves, self.nr_feature, 10000, states, golds, model.state2vec,
self.moves, self.cfg["nr_feature_tokens"], 10000, states, golds, model.state2vec,
model.vec2scores, width, drop=drop, losses=losses,
beam_density=beam_density)
for i, d_scores in enumerate(states_d_scores):

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals
import pytest
import re
from spacy.lang.en import English
from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, compile_suffix_regex
@ -19,13 +20,14 @@ def custom_en_tokenizer(en_vocab):
r"[\[\]!&:,()\*—–\/-]",
]
infix_re = compile_infix_regex(custom_infixes)
token_match_re = re.compile("a-b")
return Tokenizer(
en_vocab,
English.Defaults.tokenizer_exceptions,
prefix_re.search,
suffix_re.search,
infix_re.finditer,
token_match=None,
token_match=token_match_re.match,
)
@ -74,3 +76,81 @@ def test_en_customized_tokenizer_handles_infixes(custom_en_tokenizer):
"Megaregion",
".",
]
def test_en_customized_tokenizer_handles_token_match(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions a-b not used for the greater Southern California Megaregion."
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"a-b",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
]
def test_en_customized_tokenizer_handles_rules(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions are not used for the greater Southern California Megaregion. :)"
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"are",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
":)",
]
def test_en_customized_tokenizer_handles_rules_property(custom_en_tokenizer):
sentence = "The 8 and 10-county definitions are not used for the greater Southern California Megaregion. :)"
rules = custom_en_tokenizer.rules
del rules[":)"]
custom_en_tokenizer.rules = rules
context = [word.text for word in custom_en_tokenizer(sentence)]
assert context == [
"The",
"8",
"and",
"10",
"-",
"county",
"definitions",
"are",
"not",
"used",
"for",
"the",
"greater",
"Southern",
"California",
"Megaregion",
".",
":",
")",
]

View File

@ -259,6 +259,27 @@ def test_block_ner():
assert [token.ent_type_ for token in doc] == expected_types
def test_change_number_features():
# Test the default number features
nlp = English()
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)
ner.add_label("PERSON")
nlp.begin_training()
assert ner.model.lower.nF == ner.nr_feature
# Test we can change it
nlp = English()
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner)
ner.add_label("PERSON")
nlp.begin_training(
component_cfg={"ner": {"nr_feature_tokens": 3, "token_vector_width": 128}}
)
assert ner.model.lower.nF == 3
# Test the model runs
nlp("hello world")
class BlockerComponent1(object):
name = "my_blocker"

View File

@ -0,0 +1,14 @@
# coding: utf8
from __future__ import unicode_literals
import pytest
from spacy.language import Language
from spacy.pipeline import Tagger
def test_label_types():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("tagger"))
nlp.get_pipe("tagger").add_label("A")
with pytest.raises(ValueError):
nlp.get_pipe("tagger").add_label(9)

View File

@ -62,3 +62,11 @@ def test_textcat_learns_multilabel():
assert score < 0.5
else:
assert score > 0.5
def test_label_types():
nlp = Language()
nlp.add_pipe(nlp.create_pipe("textcat"))
nlp.get_pipe("textcat").add_label("answer")
with pytest.raises(ValueError):
nlp.get_pipe("textcat").add_label(9)

View File

@ -3,9 +3,9 @@ from __future__ import unicode_literals
import srsly
from spacy.gold import GoldCorpus
from spacy.lang.en import English
from spacy.tests.util import make_tempdir
from ..util import make_tempdir
def test_issue4402():

View File

@ -1,7 +1,6 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
from mock import Mock
from spacy.matcher import DependencyMatcher
from ..util import get_doc
@ -11,8 +10,14 @@ def test_issue4590(en_vocab):
"""Test that matches param in on_match method are the same as matches run with no on_match method"""
pattern = [
{"SPEC": {"NODE_NAME": "jumped"}, "PATTERN": {"ORTH": "jumped"}},
{"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
{"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"}, "PATTERN": {"ORTH": "fox"}},
{
"SPEC": {"NODE_NAME": "fox", "NBOR_RELOP": ">", "NBOR_NAME": "jumped"},
"PATTERN": {"ORTH": "fox"},
},
{
"SPEC": {"NODE_NAME": "quick", "NBOR_RELOP": ".", "NBOR_NAME": "jumped"},
"PATTERN": {"ORTH": "fox"},
},
]
on_match = Mock()
@ -23,12 +28,11 @@ def test_issue4590(en_vocab):
text = "The quick brown fox jumped over the lazy fox"
heads = [3, 2, 1, 1, 0, -1, 2, 1, -3]
deps = ["det", "amod", "amod", "nsubj", "prep", "pobj", "det", "amod"]
doc = get_doc(en_vocab, text.split(), heads=heads, deps=deps)
matches = matcher(doc)
on_match_args = on_match.call_args
assert on_match_args[0][3] == matches

View File

@ -0,0 +1,65 @@
# coding: utf-8
from __future__ import unicode_literals
from spacy.lang.en import English
from spacy.pipeline import EntityRuler
from ..util import make_tempdir
def test_issue4651_with_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialize correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER")
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
ruler_reloaded = EntityRuler(nlp_reloaded).from_disk(file_path)
nlp_reloaded.add_pipe(ruler_reloaded)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded
def test_issue4651_without_phrase_matcher_attr():
"""Test that the EntityRuler PhraseMatcher is deserialize correctly using
the method from_disk when the EntityRuler argument phrase_matcher_attr is
not specified.
"""
text = "Spacy is a python library for nlp"
nlp = English()
ruler = EntityRuler(nlp)
patterns = [{"label": "PYTHON_LIB", "pattern": "spacy", "id": "spaCy"}]
ruler.add_patterns(patterns)
nlp.add_pipe(ruler)
doc = nlp(text)
res = [(ent.text, ent.label_, ent.ent_id_) for ent in doc.ents]
nlp_reloaded = English()
with make_tempdir() as d:
file_path = d / "entityruler"
ruler.to_disk(file_path)
ruler_reloaded = EntityRuler(nlp_reloaded).from_disk(file_path)
nlp_reloaded.add_pipe(ruler_reloaded)
doc_reloaded = nlp_reloaded(text)
res_reloaded = [(ent.text, ent.label_, ent.ent_id_) for ent in doc_reloaded.ents]
assert res == res_reloaded

View File

@ -12,8 +12,22 @@ from .util import get_doc
test_las_apple = [
[
"Apple is looking at buying U.K. startup for $ 1 billion",
{"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
"deps": ['nsubj', 'aux', 'ROOT', 'prep', 'pcomp', 'compound', 'dobj', 'prep', 'quantmod', 'compound', 'pobj']},
{
"heads": [2, 2, 2, 2, 3, 6, 4, 4, 10, 10, 7],
"deps": [
"nsubj",
"aux",
"ROOT",
"prep",
"pcomp",
"compound",
"dobj",
"prep",
"quantmod",
"compound",
"pobj",
],
},
]
]
@ -59,7 +73,7 @@ def test_las_per_type(en_vocab):
en_vocab,
words=input_.split(" "),
heads=([h - i for i, h in enumerate(annot["heads"])]),
deps=annot["deps"]
deps=annot["deps"],
)
gold = GoldParse(doc, heads=annot["heads"], deps=annot["deps"])
doc[0].dep_ = "compound"

View File

@ -0,0 +1,65 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
from spacy.util import get_lang_class
# Only include languages with no external dependencies
# "is" seems to confuse importlib, so we're also excluding it for now
# excluded: ja, ru, th, uk, vi, zh, is
LANGUAGES = [
pytest.param("fr", marks=pytest.mark.slow()),
pytest.param("af", marks=pytest.mark.slow()),
pytest.param("ar", marks=pytest.mark.slow()),
pytest.param("bg", marks=pytest.mark.slow()),
"bn",
pytest.param("ca", marks=pytest.mark.slow()),
pytest.param("cs", marks=pytest.mark.slow()),
pytest.param("da", marks=pytest.mark.slow()),
pytest.param("de", marks=pytest.mark.slow()),
"el",
"en",
pytest.param("es", marks=pytest.mark.slow()),
pytest.param("et", marks=pytest.mark.slow()),
pytest.param("fa", marks=pytest.mark.slow()),
pytest.param("fi", marks=pytest.mark.slow()),
"fr",
pytest.param("ga", marks=pytest.mark.slow()),
pytest.param("he", marks=pytest.mark.slow()),
pytest.param("hi", marks=pytest.mark.slow()),
pytest.param("hr", marks=pytest.mark.slow()),
"hu",
pytest.param("id", marks=pytest.mark.slow()),
pytest.param("it", marks=pytest.mark.slow()),
pytest.param("kn", marks=pytest.mark.slow()),
pytest.param("lb", marks=pytest.mark.slow()),
pytest.param("lt", marks=pytest.mark.slow()),
pytest.param("lv", marks=pytest.mark.slow()),
pytest.param("nb", marks=pytest.mark.slow()),
pytest.param("nl", marks=pytest.mark.slow()),
"pl",
pytest.param("pt", marks=pytest.mark.slow()),
pytest.param("ro", marks=pytest.mark.slow()),
pytest.param("si", marks=pytest.mark.slow()),
pytest.param("sk", marks=pytest.mark.slow()),
pytest.param("sl", marks=pytest.mark.slow()),
pytest.param("sq", marks=pytest.mark.slow()),
pytest.param("sr", marks=pytest.mark.slow()),
pytest.param("sv", marks=pytest.mark.slow()),
pytest.param("ta", marks=pytest.mark.slow()),
pytest.param("te", marks=pytest.mark.slow()),
pytest.param("tl", marks=pytest.mark.slow()),
pytest.param("tr", marks=pytest.mark.slow()),
pytest.param("tt", marks=pytest.mark.slow()),
pytest.param("ur", marks=pytest.mark.slow()),
]
@pytest.mark.parametrize("lang", LANGUAGES)
def test_tokenizer_explain(lang):
tokenizer = get_lang_class(lang).Defaults.create_tokenizer()
examples = pytest.importorskip("spacy.lang.{}.examples".format(lang))
for sentence in examples.sentences:
tokens = [t.text for t in tokenizer(sentence) if not t.is_space]
debug_tokens = [t[1] for t in tokenizer.explain(sentence)]
assert tokens == debug_tokens

View File

@ -15,6 +15,8 @@ import re
from .tokens.doc cimport Doc
from .strings cimport hash_string
from .compat import unescape_unicode
from .attrs import intify_attrs
from .symbols import ORTH
from .errors import Errors, Warnings, deprecation_warning
from . import util
@ -57,9 +59,7 @@ cdef class Tokenizer:
self.infix_finditer = infix_finditer
self.vocab = vocab
self._rules = {}
if rules is not None:
for chunk, substrings in sorted(rules.items()):
self.add_special_case(chunk, substrings)
self._load_special_tokenization(rules)
property token_match:
def __get__(self):
@ -93,6 +93,18 @@ cdef class Tokenizer:
self._infix_finditer = infix_finditer
self._flush_cache()
property rules:
def __get__(self):
return self._rules
def __set__(self, rules):
self._rules = {}
self._reset_cache([key for key in self._cache])
self._reset_specials()
self._cache = PreshMap()
self._specials = PreshMap()
self._load_special_tokenization(rules)
def __reduce__(self):
args = (self.vocab,
self._rules,
@ -227,10 +239,6 @@ cdef class Tokenizer:
cdef unicode minus_suf
cdef size_t last_size = 0
while string and len(string) != last_size:
if self.token_match and self.token_match(string) \
and not self.find_prefix(string) \
and not self.find_suffix(string):
break
if self._specials.get(hash_string(string)) != NULL:
has_special[0] = 1
break
@ -393,8 +401,9 @@ cdef class Tokenizer:
def _load_special_tokenization(self, special_cases):
"""Add special-case tokenization rules."""
for chunk, substrings in sorted(special_cases.items()):
self.add_special_case(chunk, substrings)
if special_cases is not None:
for chunk, substrings in sorted(special_cases.items()):
self.add_special_case(chunk, substrings)
def add_special_case(self, unicode string, substrings):
"""Add a special-case tokenization rule.
@ -423,6 +432,73 @@ cdef class Tokenizer:
self.mem.free(stale_cached)
self._rules[string] = substrings
def explain(self, text):
"""A debugging tokenizer that provides information about which
tokenizer rule or pattern was matched for each token. The tokens
produced are identical to `nlp.tokenizer()` except for whitespace
tokens.
string (unicode): The string to tokenize.
RETURNS (list): A list of (pattern_string, token_string) tuples
DOCS: https://spacy.io/api/tokenizer#explain
"""
prefix_search = self.prefix_search
suffix_search = self.suffix_search
infix_finditer = self.infix_finditer
token_match = self.token_match
special_cases = {}
for orth, special_tokens in self.rules.items():
special_cases[orth] = [intify_attrs(special_token, strings_map=self.vocab.strings, _do_deprecated=True) for special_token in special_tokens]
tokens = []
for substring in text.split():
suffixes = []
while substring:
while prefix_search(substring) or suffix_search(substring):
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
break
if prefix_search(substring):
split = prefix_search(substring).end()
# break if pattern matches the empty string
if split == 0:
break
tokens.append(("PREFIX", substring[:split]))
substring = substring[split:]
if substring in special_cases:
continue
if suffix_search(substring):
split = suffix_search(substring).start()
# break if pattern matches the empty string
if split == len(substring):
break
suffixes.append(("SUFFIX", substring[split:]))
substring = substring[:split]
if substring in special_cases:
tokens.extend(("SPECIAL-" + str(i + 1), self.vocab.strings[e[ORTH]]) for i, e in enumerate(special_cases[substring]))
substring = ''
elif token_match(substring):
tokens.append(("TOKEN_MATCH", substring))
substring = ''
elif list(infix_finditer(substring)):
infixes = infix_finditer(substring)
offset = 0
for match in infixes:
if substring[offset : match.start()]:
tokens.append(("TOKEN", substring[offset : match.start()]))
if substring[match.start() : match.end()]:
tokens.append(("INFIX", substring[match.start() : match.end()]))
offset = match.end()
if substring[offset:]:
tokens.append(("TOKEN", substring[offset:]))
substring = ''
elif substring:
tokens.append(("TOKEN", substring))
substring = ''
tokens.extend(reversed(suffixes))
return tokens
def to_disk(self, path, **kwargs):
"""Save the current state to a directory.
@ -507,8 +583,7 @@ cdef class Tokenizer:
self._reset_specials()
self._cache = PreshMap()
self._specials = PreshMap()
for string, substrings in data.get("rules", {}).items():
self.add_special_case(string, substrings)
self._load_special_tokenization(data.get("rules", {}))
return self

View File

@ -301,13 +301,13 @@ def get_component_name(component):
return repr(component)
def get_cuda_stream(require=False):
def get_cuda_stream(require=False, non_blocking=True):
if CudaStream is None:
return None
elif isinstance(Model.ops, NumpyOps):
return None
else:
return CudaStream()
return CudaStream(non_blocking=non_blocking)
def get_async(stream, numpy_array):

View File

@ -265,17 +265,12 @@ cdef class Vectors:
rows = [self.key2row.get(key, -1.) for key in keys]
return xp.asarray(rows, dtype="i")
else:
targets = set()
row2key = {row: key for key, row in self.key2row.items()}
if row is not None:
targets.add(row)
return row2key[row]
else:
targets.update(rows)
results = []
for key, row in self.key2row.items():
if row in targets:
results.append(key)
targets.remove(row)
return xp.asarray(results, dtype="uint64")
results = [row2key[row] for row in rows]
return xp.asarray(results, dtype="uint64")
def add(self, key, *, vector=None, row=None):
"""Add a key to the table. Keys can be mapped to an existing vector

View File

@ -58,4 +58,5 @@ Update the evaluation scores from a single [`Doc`](/api/doc) /
| `ents_per_type` <Tag variant="new">2.1.5</Tag> | dict | Scores per entity label. Keyed by label, mapped to a dict of `p`, `r` and `f` scores. |
| `textcat_score` <Tag variant="new">2.2</Tag> | float | F-score on positive label for binary exclusive, macro-averaged F-score for 3+ exclusive, macro-averaged AUC ROC score for multilabel (`-1` if undefined). |
| `textcats_per_cat` <Tag variant="new">2.2</Tag> | dict | Scores per textcat label, keyed by label. |
| `las_per_type` <Tag variant="new">2.2.3</Tag> | dict | Labelled dependency scores, keyed by label. |
| `scores` | dict | All scores, keyed by type. |

View File

@ -34,15 +34,15 @@ the
> tokenizer = nlp.Defaults.create_tokenizer(nlp)
> ```
| Name | Type | Description |
| ---------------- | ----------- | ----------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | A storage container for lexical types. |
| `rules` | dict | Exceptions and special-cases for the tokenizer. |
| `prefix_search` | callable | A function matching the signature of `re.compile(string).search` to match prefixes. |
| `suffix_search` | callable | A function matching the signature of `re.compile(string).search` to match suffixes. |
| `infix_finditer` | callable | A function matching the signature of `re.compile(string).finditer` to find infixes. |
| `token_match` | callable | A boolean function matching strings to be recognized as tokens. |
| **RETURNS** | `Tokenizer` | The newly constructed object. |
| Name | Type | Description |
| ---------------- | ----------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | A storage container for lexical types. |
| `rules` | dict | Exceptions and special-cases for the tokenizer. |
| `prefix_search` | callable | A function matching the signature of `re.compile(string).search` to match prefixes. |
| `suffix_search` | callable | A function matching the signature of `re.compile(string).search` to match suffixes. |
| `infix_finditer` | callable | A function matching the signature of `re.compile(string).finditer` to find infixes. |
| `token_match` | callable | A function matching the signature of `re.compile(string).match to find token matches. |
| **RETURNS** | `Tokenizer` | The newly constructed object. |
## Tokenizer.\_\_call\_\_ {#call tag="method"}
@ -128,6 +128,25 @@ and examples.
| `string` | unicode | The string to specially tokenize. |
| `token_attrs` | iterable | A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. |
## Tokenizer.explain {#explain tag="method"}
Tokenize a string with a slow debugging tokenizer that provides information
about which tokenizer rule or pattern was matched for each token. The tokens
produced are identical to `Tokenizer.__call__` except for whitespace tokens.
> #### Example
>
> ```python
> tok_exp = nlp.tokenizer.explain("(don't)")
> assert [t[0] for t in tok_exp] == ["PREFIX", "SPECIAL-1", "SPECIAL-2", "SUFFIX"]
> assert [t[1] for t in tok_exp] == ["(", "do", "n't", ")"]
> ```
| Name | Type | Description |
| ------------| -------- | --------------------------------------------------- |
| `string` | unicode | The string to tokenize with the debugging tokenizer |
| **RETURNS** | list | A list of `(pattern_string, token_string)` tuples |
## Tokenizer.to_disk {#to_disk tag="method"}
Serialize the tokenizer to disk.
@ -198,12 +217,14 @@ it.
## Attributes {#attributes}
| Name | Type | Description |
| ---------------- | ------- | -------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The vocab object of the parent `Doc`. |
| `prefix_search` | - | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. |
| `suffix_search` | - | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. |
| `infix_finditer` | - | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) list of `re.MatchObject` objects. |
| Name | Type | Description |
| ---------------- | ------- | --------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The vocab object of the parent `Doc`. |
| `prefix_search` | - | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. |
| `suffix_search` | - | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. |
| `infix_finditer` | - | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) list of `re.MatchObject` objects. |
| `token_match` | - | A function matching the signature of `re.compile(string).match to find token matches. Returns an `re.MatchObject` or `None. |
| `rules` | dict | A dictionary of tokenizer exceptions and special cases. |
## Serialization fields {#serialization-fields}

View File

@ -792,6 +792,33 @@ The algorithm can be summarized as follows:
tokens on all infixes.
8. Once we can't consume any more of the string, handle it as a single token.
#### Debugging the tokenizer {#tokenizer-debug new="2.2.3"}
A working implementation of the pseudo-code above is available for debugging as
[`nlp.tokenizer.explain(text)`](/api/tokenizer#explain). It returns a list of
tuples showing which tokenizer rule or pattern was matched for each token. The
tokens produced are identical to `nlp.tokenizer()` except for whitespace tokens:
```python
### {executable="true"}
from spacy.lang.en import English
nlp = English()
text = '''"Let's go!"'''
doc = nlp(text)
tok_exp = nlp.tokenizer.explain(text)
assert [t.text for t in doc if not t.is_space] == [t[1] for t in tok_exp]
for t in tok_exp:
print(t[1], "\\t", t[0])
# " PREFIX
# Let SPECIAL-1
# 's SPECIAL-2
# go TOKEN
# ! SUFFIX
# " SUFFIX
```
### Customizing spaCy's Tokenizer class {#native-tokenizers}
Let's imagine you wanted to create a tokenizer for a new language or specific

View File

@ -1679,13 +1679,14 @@
"slogan": "Information extraction from English and German texts based on predicate logic",
"github": "msg-systems/holmes-extractor",
"url": "https://github.com/msg-systems/holmes-extractor",
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural search, topic matching and supervised document classification.",
"description": "Holmes is a Python 3 library that supports a number of use cases involving information extraction from English and German texts, including chatbot, structural extraction, topic matching and supervised document classification. There is a [website demonstrating intelligent search based on topic matching](https://holmes-demo.xt.msg.team).",
"pip": "holmes-extractor",
"category": ["conversational", "standalone"],
"tags": ["chatbots", "text-processing"],
"thumb": "https://raw.githubusercontent.com/msg-systems/holmes-extractor/master/docs/holmes_thumbnail.png",
"code_example": [
"import holmes_extractor as holmes",
"holmes_manager = holmes.Manager(model='en_coref_lg')",
"holmes_manager = holmes.Manager(model='en_core_web_lg')",
"holmes_manager.register_search_phrase('A big dog chases a cat')",
"holmes_manager.start_chatbot_mode_console()"
],