mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-14 18:22:27 +03:00
Run prettier on spancategorizer.mdx
This commit is contained in:
parent
e61f0a4035
commit
02ffe45770
|
@ -11,14 +11,14 @@ api_trainable: true
|
|||
|
||||
A span categorizer consists of two parts: a [suggester function](#suggesters)
|
||||
that proposes candidate spans, which may or may not overlap, and a labeler model
|
||||
that predicts zero or more labels for each candidate.
|
||||
that predicts zero or more labels for each candidate.
|
||||
|
||||
This component comes in two forms: `spancat` and `spancat_exclusive`. When you
|
||||
need to perform multi-label classification on your spans, use `spancat`. The
|
||||
This component comes in two forms: `spancat` and `spancat_exclusive`. When you
|
||||
need to perform multi-label classification on your spans, use `spancat`. The
|
||||
`spancat` component uses a `Logistic` layer where the output class probabilities
|
||||
are independent for each class. However, if you need to predict exactly one true
|
||||
class for a span, then use `spancat_exclusive`. It uses a `Softmax` layer and treats
|
||||
the entities as a multi-class problem.
|
||||
are independent for each class. However, if you need to predict exactly one true
|
||||
class for a span, then use `spancat_exclusive`. It uses a `Softmax` layer and
|
||||
treats the entities as a multi-class problem.
|
||||
|
||||
Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the doc.
|
||||
Individual span scores can be found in `spangroup.attrs["scores"]`.
|
||||
|
@ -59,7 +59,6 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("spancat", config=config)
|
||||
> ```
|
||||
|
||||
|
||||
> #### Example (spancat_exclusive)
|
||||
>
|
||||
> ```python
|
||||
|
@ -76,19 +75,16 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("spancat_exclusive", config=config)
|
||||
> ```
|
||||
|
||||
|
||||
| Setting | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. It is only available for the `spancat` component. ~~Optional[int]~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||
| `negative_weight` | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many. It is only available for the `spancat_exclusive` component. Defaults to `1.0`. ~~float~~ |
|
||||
| `allow_overlap` | If `True`, the data is assumed to contain overlapping spans. It is only available for the `spancat_exclusive` component. Defaults to `True`. ~~bool~~ |
|
||||
|
||||
|
||||
| Setting | Description |
|
||||
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `suggester` | A function that [suggests spans](#suggesters). Spans are returned as a ragged array with two integer columns, for the start and end positions. Defaults to [`ngram_suggester`](#ngram_suggester). ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
|
||||
| `model` | A model instance that is given a a list of documents and `(start, end)` indices representing candidate span offsets. The model predicts a probability for each category for each span. Defaults to [SpanCategorizer](/api/architectures#SpanCategorizer). ~~Model[Tuple[List[Doc], Ragged], Floats2d]~~ |
|
||||
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
|
||||
| `threshold` | Minimum probability to consider a prediction positive. Spans with a positive prediction will be saved on the Doc. Defaults to `0.5`. ~~float~~ |
|
||||
| `max_positive` | Maximum number of labels to consider positive per span. Defaults to `None`, indicating no limit. It is only available for the `spancat` component. ~~Optional[int]~~ |
|
||||
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
|
||||
| `negative_weight` | Multiplier for the loss terms. It can be used to downweight the negative samples if there are too many. It is only available for the `spancat_exclusive` component. Defaults to `1.0`. ~~float~~ |
|
||||
| `allow_overlap` | If `True`, the data is assumed to contain overlapping spans. It is only available for the `spancat_exclusive` component. Defaults to `True`. ~~bool~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/spancat.py
|
||||
|
|
Loading…
Reference in New Issue
Block a user