Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2019-02-14 20:09:10 +01:00
commit 0371ac23e7
7 changed files with 65 additions and 72 deletions

View File

@ -317,6 +317,10 @@ class Errors(object):
E113 = ("The newly split token can only have one root (head = 0).")
E114 = ("The newly split token needs to have a root (head = 0)")
E115 = ("All subtokens must have associated heads")
E116 = ("Cannot currently add labels to pre-trained text classifier. Add "
"labels before training begins. This functionality was available "
"in previous versions, but had significant bugs that led to poor "
"performance")
@add_codes

View File

@ -86,7 +86,7 @@ class EntityRuler(object):
"""
all_labels = set(self.token_patterns.keys())
all_labels.update(self.phrase_patterns.keys())
return all_labels
return tuple(all_labels)
@property
def patterns(self):

View File

@ -358,7 +358,7 @@ class Tagger(Pipe):
@property
def labels(self):
return self.vocab.morphology.tag_names
return tuple(self.vocab.morphology.tag_names)
@property
def tok2vec(self):
@ -884,11 +884,11 @@ class TextCategorizer(Pipe):
@property
def labels(self):
return self.cfg.setdefault('labels', [])
return tuple(self.cfg.setdefault('labels', []))
@labels.setter
def labels(self, value):
self.cfg['labels'] = value
self.cfg['labels'] = tuple(value)
def __call__(self, doc):
scores, tensors = self.predict([doc])
@ -957,17 +957,13 @@ class TextCategorizer(Pipe):
# The problem is that we resize the last layer, but the last layer
# is actually just an ensemble. We're not resizing the child layers
# -- a huge problem.
raise ValueError(
"Cannot currently add labels to pre-trained text classifier. "
"Add labels before training begins. This functionality was "
"available in previous versions, but had significant bugs that "
"let to poor performance")
raise ValueError(Errors.E116)
#smaller = self.model._layers[-1]
#larger = Affine(len(self.labels)+1, smaller.nI)
#copy_array(larger.W[:smaller.nO], smaller.W)
#copy_array(larger.b[:smaller.nO], smaller.b)
#self.model._layers[-1] = larger
self.labels.append(label)
self.labels = tuple(list(self.labels) + [label])
return 1
def begin_training(self, get_gold_tuples=lambda: [], pipeline=None, sgd=None,
@ -1012,6 +1008,11 @@ cdef class DependencyParser(Parser):
return (DependencyParser, (self.vocab, self.moves, self.model),
None, None)
@property
def labels(self):
# Get the labels from the model by looking at the available moves
return tuple(set(move.split("-")[1] for move in self.move_names))
cdef class EntityRecognizer(Parser):
name = "ner"
@ -1040,8 +1041,8 @@ cdef class EntityRecognizer(Parser):
def labels(self):
# Get the labels from the model by looking at the available moves, e.g.
# B-PERSON, I-PERSON, L-PERSON, U-PERSON
return [move.split("-")[1] for move in self.move_names
if move[0] in ("B", "I", "L", "U")]
return tuple(set(move.split("-")[1] for move in self.move_names
if move[0] in ("B", "I", "L", "U")))
__all__ = ['Tagger', 'DependencyParser', 'EntityRecognizer', 'Tensorizer', 'TextCategorizer']

View File

@ -1,12 +1,11 @@
# coding: utf-8
from __future__ import unicode_literals
from ..util import get_doc
from ...vocab import Vocab
from ...tokens import Doc
from ...tokens import Span
import pytest
from spacy.vocab import Vocab
from spacy.tokens import Doc
from ..util import get_doc
def test_doc_split(en_tokenizer):
@ -17,35 +16,41 @@ def test_doc_split(en_tokenizer):
assert len(doc) == 3
assert len(str(doc)) == 19
assert doc[0].head.text == 'start'
assert doc[1].head.text == '.'
assert doc[0].head.text == "start"
assert doc[1].head.text == "."
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 0], attrs={'tag':'NNP', 'lemma':'Los Angeles', 'ent_type':'GPE'})
retokenizer.split(
doc[0],
["Los", "Angeles"],
[1, 0],
attrs={"tag": "NNP", "lemma": "Los Angeles", "ent_type": "GPE"},
)
assert len(doc) == 4
assert doc[0].text == 'Los'
assert doc[0].head.text == 'Angeles'
assert doc[0].text == "Los"
assert doc[0].head.text == "Angeles"
assert doc[0].idx == 0
assert doc[1].idx == 3
assert doc[1].text == 'Angeles'
assert doc[1].head.text == 'start'
assert doc[1].text == "Angeles"
assert doc[1].head.text == "start"
assert doc[2].text == 'start'
assert doc[2].head.text == '.'
assert doc[2].text == "start"
assert doc[2].head.text == "."
assert doc[3].text == '.'
assert doc[3].head.text == '.'
assert doc[3].text == "."
assert doc[3].head.text == "."
assert len(str(doc)) == 19
def test_split_dependencies(en_tokenizer):
text = "LosAngeles start."
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens])
dep1 = doc.vocab.strings.add('amod')
dep2 = doc.vocab.strings.add('subject')
dep1 = doc.vocab.strings.add("amod")
dep2 = doc.vocab.strings.add("subject")
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 0], [dep1, dep2])
@ -53,27 +58,26 @@ def test_split_dependencies(en_tokenizer):
assert doc[1].dep == dep2
def test_split_heads_error(en_tokenizer):
text = "LosAngeles start."
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens])
#Not enough heads
# Not enough heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [0])
#Too many heads
# Too many heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1, 0])
#No token head
# No token head
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [1, 1])
#Several token heads
# Several token heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [0, 0])
@ -83,7 +87,7 @@ def test_spans_entity_merge_iob():
# Test entity IOB stays consistent after merging
words = ["abc", "d", "e"]
doc = Doc(Vocab(), words=words)
doc.ents = [(doc.vocab.strings.add('ent-abcd'), 0, 2)]
doc.ents = [(doc.vocab.strings.add("ent-abcd"), 0, 2)]
assert doc[0].ent_iob_ == "B"
assert doc[1].ent_iob_ == "I"
@ -94,12 +98,14 @@ def test_spans_entity_merge_iob():
assert doc[2].ent_iob_ == "I"
assert doc[3].ent_iob_ == "I"
def test_spans_sentence_update_after_merge(en_tokenizer):
# fmt: off
text = "StewartLee is a stand up comedian. He lives in England and loves JoePasquale."
heads = [1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2]
deps = ['nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
'compound', 'punct']
deps = ["nsubj", "ROOT", "det", "amod", "prt", "attr", "punct", "nsubj",
"ROOT", "prep", "pobj", "cc", "conj", "compound", "punct"]
# fmt: on
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)

View File

@ -112,3 +112,15 @@ def test_add_lots_of_pipes(nlp, n_pipes):
def test_raise_for_invalid_components(nlp, component):
with pytest.raises(ValueError):
nlp.add_pipe(component)
@pytest.mark.parametrize("component", ["ner", "tagger", "parser", "textcat"])
def test_pipe_base_class_add_label(nlp, component):
label = "TEST"
pipe = nlp.create_pipe(component)
pipe.add_label(label)
if component == "tagger":
# Tagger always has the default coarse-grained label scheme
assert label in pipe.labels
else:
assert pipe.labels == (label,)

View File

@ -11,7 +11,6 @@ import numpy
from ..util import add_vecs_to_vocab, get_doc
@pytest.mark.xfail
def test_issue2179():
"""Test that spurious 'extra_labels' aren't created when initializing NER."""
nlp = Italian()
@ -23,7 +22,7 @@ def test_issue2179():
nlp2.add_pipe(nlp2.create_pipe("ner"))
nlp2.from_bytes(nlp.to_bytes())
assert "extra_labels" not in nlp2.get_pipe("ner").cfg
assert nlp2.get_pipe("ner").labels == ["CITIZENSHIP"]
assert nlp2.get_pipe("ner").labels == ("CITIZENSHIP",)
def test_issue2219(en_vocab):

View File

@ -21,6 +21,7 @@ from ..attrs import intify_attrs
from ..util import SimpleFrozenDict
from ..errors import Errors
cdef class Retokenizer:
"""Helper class for doc.retokenize() context manager."""
cdef Doc doc
@ -174,25 +175,21 @@ def _bulk_merge(Doc doc, merges):
def _get_start(merge):
return merge[0].start
merges.sort(key=_get_start)
merges.sort(key=_get_start)
for merge_index, (span, attributes) in enumerate(merges):
start = span.start
end = span.end
spans.append(span)
# House the new merged token where it starts
token = &doc.c[start]
tokens[merge_index] = token
# Assign attributes
for attr_name, attr_value in attributes.items():
if attr_name == TAG:
doc.vocab.morphology.assign_tag(token, attr_value)
else:
Token.set_struct_attr(token, attr_name, attr_value)
# Resize the doc.tensor, if it's set. Let the last row for each token stand
# for the merged region. To do this, we create a boolean array indicating
# whether the row is to be deleted, then use numpy.delete
@ -205,7 +202,6 @@ def _bulk_merge(Doc doc, merges):
for i, span in enumerate(spans):
span_roots.append(span.root.i)
tokens[i].dep = span.root.dep
# We update token.lex after keeping span root and dep, since
# setting token.lex will change span.start and span.end properties
# as it modifies the character offsets in the doc
@ -217,7 +213,6 @@ def _bulk_merge(Doc doc, merges):
tokens[token_index].lex = lex
# We set trailing space here too
tokens[token_index].spacy = doc.c[spans[token_index].end-1].spacy
# Begin by setting all the head indices to absolute token positions
# This is easier to work with for now than the offsets
# Before thinking of something simpler, beware the case where a
@ -225,11 +220,9 @@ def _bulk_merge(Doc doc, merges):
# tokens changes.
for i in range(doc.length):
doc.c[i].head += i
# Set the head of the merged token from the Span
for i in range(len(merges)):
tokens[i].head = doc.c[span_roots[i]].head
# Adjust deps before shrinking tokens
# Tokens which point into the merged token should now point to it
# Subtract the offset from all tokens which point to >= end
@ -241,16 +234,13 @@ def _bulk_merge(Doc doc, merges):
#last token was the last of the span
current_offset += (spans[current_span_index].end - spans[current_span_index].start) -1
current_span_index += 1
if current_span_index < len(spans) and \
spans[current_span_index].start <= i < spans[current_span_index].end:
offsets.append(spans[current_span_index].start - current_offset)
else:
offsets.append(i - current_offset)
for i in range(doc.length):
doc.c[i].head = offsets[doc.c[i].head]
# Now compress the token array
offset = 0
in_span = False
@ -272,14 +262,11 @@ def _bulk_merge(Doc doc, merges):
memset(&doc.c[i], 0, sizeof(TokenC))
doc.c[i].lex = &EMPTY_LEXEME
doc.length -= offset
# ...And, set heads back to a relative position
for i in range(doc.length):
doc.c[i].head -= i
# Set the left/right children, left/right edges
set_children_from_heads(doc.c, doc.length)
# Make sure ent_iob remains consistent
for (span, _) in merges:
if(span.end < len(offsets)):
@ -329,13 +316,10 @@ def _split(Doc doc, int token_index, orths, heads, deps, attrs):
token_head_index = index
if token_head_index == -1:
raise ValueError(Errors.E113)
# First, make the dependencies absolutes, and adjust all possible dependencies before
# creating the tokens
for i in range(doc.length):
doc.c[i].head += i
# Adjust dependencies
offset = nb_subtokens - 1
for i in range(doc.length):
@ -344,22 +328,17 @@ def _split(Doc doc, int token_index, orths, heads, deps, attrs):
doc.c[i].head = token_head_index
elif head_idx > token_index:
doc.c[i].head += offset
new_token_head = doc.c[token_index].head
# Double doc.c max_length if necessary (until big enough for all new tokens)
while doc.length + nb_subtokens - 1 >= doc.max_length:
doc._realloc(doc.length * 2)
# Move tokens after the split to create space for the new tokens
doc.length = len(doc) + nb_subtokens -1
for token_to_move in range(doc.length - 1, token_index, -1):
doc.c[token_to_move + nb_subtokens - 1] = doc.c[token_to_move]
# Host the tokens in the newly created space
cdef int idx_offset = 0
for i, orth in enumerate(orths):
token = &doc.c[token_index + i]
lex = doc.vocab.get(doc.mem, orth)
token.lex = lex
@ -367,21 +346,18 @@ def _split(Doc doc, int token_index, orths, heads, deps, attrs):
if i != 0:
token.idx = orig_token.idx + idx_offset
idx_offset += len(orth)
# Set token.spacy to False for all non-last split tokens, and
# to origToken.spacy for the last token
if (i < nb_subtokens - 1):
token.spacy = False
else:
token.spacy = orig_token.spacy
# Apply attrs to each subtoken
for attr_name, attr_value in attrs.items():
if attr_name == TAG:
doc.vocab.morphology.assign_tag(token, attr_value)
else:
Token.set_struct_attr(token, attr_name, attr_value)
# Make IOB consistent
if (orig_token.ent_iob == 3):
if i == 0:
@ -391,22 +367,17 @@ def _split(Doc doc, int token_index, orths, heads, deps, attrs):
else:
# In all other cases subtokens inherit iob from origToken
token.ent_iob = orig_token.ent_iob
# Use the head of the new token everywhere. This will be partially overwritten later on.
token.head = new_token_head
# Transform the dependencies into relative ones again
for i in range(doc.length):
doc.c[i].head -= i
# Assign correct dependencies to the inner token
for i, head in enumerate(heads):
if head != 0:
# the token's head's head is already correct
doc.c[token_index + i].head = head
for i, dep in enumerate(deps):
doc[token_index + i].dep = dep
# set children from head
set_children_from_heads(doc.c, doc.length)