mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Add spaCy IRL to landing [ci skip]
This commit is contained in:
		
							parent
							
								
									68900066e0
								
							
						
					
					
						commit
						037ffdfd3f
					
				|  | @ -75,14 +75,28 @@ export const LandingBannerGrid = ({ children }) => ( | |||
|     </Grid> | ||||
| ) | ||||
| 
 | ||||
| export const LandingBanner = ({ title, label, to, button, small, background, color, children }) => { | ||||
| export const LandingBanner = ({ | ||||
|     title, | ||||
|     label, | ||||
|     to, | ||||
|     button, | ||||
|     small, | ||||
|     background, | ||||
|     backgroundImage, | ||||
|     color, | ||||
|     children, | ||||
| }) => { | ||||
|     const contentClassNames = classNames(classes.bannerContent, { | ||||
|         [classes.bannerContentSmall]: small, | ||||
|     }) | ||||
|     const textClassNames = classNames(classes.bannerText, { | ||||
|         [classes.bannerTextSmall]: small, | ||||
|     }) | ||||
|     const style = { '--color-theme': background, '--color-back': color } | ||||
|     const style = { | ||||
|         '--color-theme': background, | ||||
|         '--color-back': color, | ||||
|         backgroundImage: backgroundImage ? `url(${backgroundImage})` : null, | ||||
|     } | ||||
|     const Heading = small ? H2 : H1 | ||||
|     return ( | ||||
|         <div className={classes.banner} style={style}> | ||||
|  | @ -113,7 +127,7 @@ export const LandingBanner = ({ title, label, to, button, small, background, col | |||
| 
 | ||||
| export const LandingBannerButton = ({ to, small, children }) => ( | ||||
|     <div className={classes.bannerButton}> | ||||
|         <Button to={to} variant="tertiary" large={!small}> | ||||
|         <Button to={to} variant="tertiary" large={!small} className={classes.bannerButtonElement}> | ||||
|             {children} | ||||
|         </Button> | ||||
|     </div> | ||||
|  |  | |||
							
								
								
									
										
											BIN
										
									
								
								website/src/images/spacy-irl.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								website/src/images/spacy-irl.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 75 KiB | 
|  | @ -73,6 +73,7 @@ | |||
|     color: var(--color-back) | ||||
|     padding: 5rem | ||||
|     margin-bottom: var(--spacing-md) | ||||
|     background-size: cover | ||||
| 
 | ||||
| .banner-content | ||||
|     margin-bottom: 0 | ||||
|  | @ -100,7 +101,7 @@ | |||
| 
 | ||||
| .banner-text-small p | ||||
|     font-size: 1.35rem | ||||
|     margin-bottom: 1rem | ||||
|     margin-bottom: 1.5rem | ||||
| 
 | ||||
| @include breakpoint(min, md) | ||||
|     .banner-content | ||||
|  | @ -134,6 +135,9 @@ | |||
|     margin-bottom: var(--spacing-sm) | ||||
|     text-align: right | ||||
| 
 | ||||
| .banner-button-element | ||||
|     background: var(--color-theme) | ||||
| 
 | ||||
| .logos | ||||
|     text-align: center | ||||
|     padding-bottom: 1rem | ||||
|  |  | |||
|  | @ -19,6 +19,7 @@ import { H2 } from '../components/typography' | |||
| import { Ul, Li } from '../components/list' | ||||
| import Button from '../components/button' | ||||
| import Link from '../components/link' | ||||
| import irlBackground from '../images/spacy-irl.jpg' | ||||
| 
 | ||||
| import BenchmarksChoi from 'usage/_benchmarks-choi.md' | ||||
| 
 | ||||
|  | @ -151,19 +152,21 @@ const Landing = ({ data }) => { | |||
| 
 | ||||
|             <LandingBannerGrid> | ||||
|                 <LandingBanner | ||||
|                     title="BERT-style language model pretraining and more" | ||||
|                     label="New in v2.1" | ||||
|                     to="/usage/v2-1" | ||||
|                     button="Read more" | ||||
|                     title="spaCy IRL 2019: Two days of NLP" | ||||
|                     label="Join us in Berlin" | ||||
|                     to="https://irl.spacy.io/2019" | ||||
|                     button="Get tickets" | ||||
|                     background="#ffc194" | ||||
|                     backgroundImage={irlBackground} | ||||
|                     color="#1a1e23" | ||||
|                     small | ||||
|                 > | ||||
|                     Learn more from small training corpora by initializing your models with{' '} | ||||
|                     <strong>knowledge from raw text</strong>. The new pretrain command teaches | ||||
|                     spaCy's CNN model to predict words based on their context, producing | ||||
|                     representations of words in contexts. If you've seen Google's BERT system or | ||||
|                     fast.ai's ULMFiT, spaCy's pretraining is similar – but much more efficient. It's | ||||
|                     still experimental, but users are already reporting good results, so give it a | ||||
|                     try! | ||||
|                     We're pleased to invite the spaCy community and other folks working on Natural | ||||
|                     Language Processing to Berlin this summer for a small and intimate event{' '} | ||||
|                     <strong>July 5-6, 2019</strong>. The event includes a hands-on training day for | ||||
|                     teams using spaCy in production, followed by a one-track conference. We booked a | ||||
|                     beautiful venue, hand-picked an awesome lineup of speakers and scheduled plenty | ||||
|                     of social time to get to know each other and exchange ideas. | ||||
|                 </LandingBanner> | ||||
| 
 | ||||
|                 <LandingBanner | ||||
|  | @ -191,23 +194,17 @@ const Landing = ({ data }) => { | |||
|             <LandingLogos title="Featured on" logos={data.logosPublications} /> | ||||
| 
 | ||||
|             <LandingBanner | ||||
|                 title="Convolutional neural network models" | ||||
|                 label="New in v2.0" | ||||
|                 button="Download models" | ||||
|                 to="/models" | ||||
|                 title="BERT-style language model pretraining" | ||||
|                 label="New in v2.1" | ||||
|                 to="/usage/v2-1" | ||||
|                 button="Read more" | ||||
|             > | ||||
|                 spaCy v2.0 features new neural models for <strong>tagging</strong>,{' '} | ||||
|                 <strong>parsing</strong> and <strong>entity recognition</strong>. The models have | ||||
|                 been designed and implemented from scratch specifically for spaCy, to give you an | ||||
|                 unmatched balance of speed, size and accuracy. A novel bloom embedding strategy with | ||||
|                 subword features is used to support huge vocabularies in tiny tables. Convolutional | ||||
|                 layers with residual connections, layer normalization and maxout non-linearity are | ||||
|                 used, giving much better efficiency than the standard BiLSTM solution. Finally, the | ||||
|                 parser and NER use an imitation learning objective to deliver accuracy in-line with | ||||
|                 the latest research systems, even when evaluated from raw text. With these | ||||
|                 innovations, spaCy v2.0's models are <strong>10× smaller</strong>,{' '} | ||||
|                 <strong>20% more accurate</strong>, and | ||||
|                 <strong>even cheaper to run</strong> than the previous generation. | ||||
|                 Learn more from small training corpora by initializing your models with{' '} | ||||
|                 <strong>knowledge from raw text</strong>. The new pretrain command teaches spaCy's | ||||
|                 CNN model to predict words based on their context, producing representations of | ||||
|                 words in contexts. If you've seen Google's BERT system or fast.ai's ULMFiT, spaCy's | ||||
|                 pretraining is similar – but much more efficient. It's still experimental, but users | ||||
|                 are already reporting good results, so give it a try! | ||||
|             </LandingBanner> | ||||
| 
 | ||||
|             <LandingGrid cols={2}> | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user