mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Remove n_threads
This commit is contained in:
parent
4c7ab7620a
commit
04b4df0ec9
|
@ -95,7 +95,6 @@ multiprocessing.
|
|||
| ------------ | ----- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `texts` | - | A sequence of unicode objects. |
|
||||
| `as_tuples` | bool | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. |
|
||||
| `n_threads` | int | The number of worker threads to use. If `-1`, OpenMP will decide how many to use at run time. Default is `2`. |
|
||||
| `batch_size` | int | The number of texts to buffer. |
|
||||
| `disable` | list | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). |
|
||||
| **YIELDS** | `Doc` | Documents in the order of the original text. |
|
||||
|
|
|
@ -68,7 +68,7 @@ matched phrases with entity types. Instead, actions need to be specified when
|
|||
custom actions per pattern within the same matcher. For example, you might only
|
||||
want to merge some entity types, and set custom flags for other matched
|
||||
patterns. For more details and examples, see the usage guide on
|
||||
[rule-based matching](/usage/linguistic-features#rule-based-matching).
|
||||
[rule-based matching](/usage/rule-based-matching).
|
||||
|
||||
</Infobox>
|
||||
|
||||
|
@ -81,7 +81,7 @@ Match a stream of documents, yielding them in turn.
|
|||
> ```python
|
||||
> from spacy.matcher import Matcher
|
||||
> matcher = Matcher(nlp.vocab)
|
||||
> for doc in matcher.pipe(docs, batch_size=50, n_threads=4):
|
||||
> for doc in matcher.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
|
@ -89,7 +89,6 @@ Match a stream of documents, yielding them in turn.
|
|||
| --------------------------------------------- | -------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `docs` | iterable | A stream of documents. |
|
||||
| `batch_size` | int | The number of documents to accumulate into a working set. |
|
||||
| `n_threads` | int | The number of threads with which to work on the buffer in parallel, if the `Matcher` implementation supports multi-threading. |
|
||||
| `return_matches` <Tag variant="new">2.1</Tag> | bool | Yield the match lists along with the docs, making results `(doc, matches)` tuples. |
|
||||
| `as_tuples` | bool | Interpret the input stream as `(doc, context)` tuples, and yield `(result, context)` tuples out. If both `return_matches` and `as_tuples` are `True`, the output will be a sequence of `((doc, matches), context)` tuples. |
|
||||
| **YIELDS** | `Doc` | Documents, in order. |
|
||||
|
|
|
@ -78,15 +78,14 @@ Match a stream of documents, yielding them in turn.
|
|||
> ```python
|
||||
> from spacy.matcher import PhraseMatcher
|
||||
> matcher = PhraseMatcher(nlp.vocab)
|
||||
> for doc in matcher.pipe(texts, batch_size=50, n_threads=4):
|
||||
> for doc in matcher.pipe(texts, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | -------- | ----------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------ | -------- | --------------------------------------------------------- |
|
||||
| `docs` | iterable | A stream of documents. |
|
||||
| `batch_size` | int | The number of documents to accumulate into a working set. |
|
||||
| `n_threads` | int | The number of threads with which to work on the buffer in parallel, if the `PhraseMatcher` implementation supports multi-threading. |
|
||||
| **YIELDS** | `Doc` | Documents, in order. |
|
||||
|
||||
## PhraseMatcher.\_\_len\_\_ {#len tag="method"}
|
||||
|
|
|
@ -83,10 +83,9 @@ delegate to the [`predict`](/api/textcategorizer#predict) and
|
|||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | -------- | -------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------ | -------- | ------------------------------------------------------ |
|
||||
| `stream` | iterable | A stream of documents. |
|
||||
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||||
| `n_threads` | int | The number of worker threads to use. If `-1`, OpenMP will decide how many to use at run time. Default is `-1`. |
|
||||
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||||
|
||||
## TextCategorizer.predict {#predict tag="method"}
|
||||
|
|
|
@ -62,10 +62,9 @@ Tokenize a stream of texts.
|
|||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | ----- | ----------------------------------------------------------------------------------------------------------------------- |
|
||||
| ------------ | ----- | -------------------------------------------------------- |
|
||||
| `texts` | - | A sequence of unicode texts. |
|
||||
| `batch_size` | int | The number of texts to accumulate in an internal buffer. |
|
||||
| `n_threads` | int | The number of threads to use, if the implementation supports multi-threading. The default tokenizer is single-threaded. |
|
||||
| **YIELDS** | `Doc` | A sequence of Doc objects, in order. |
|
||||
|
||||
## Tokenizer.find_infix {#find_infix tag="method"}
|
||||
|
|
Loading…
Reference in New Issue
Block a user