mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
Update docs [ci skip]
This commit is contained in:
parent
7f2e4244df
commit
04e4d59235
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -18,8 +18,6 @@ website/.npm
|
|||
website/logs
|
||||
*.log
|
||||
npm-debug.log*
|
||||
website/www/
|
||||
website/_deploy.sh
|
||||
quickstart-training-generator.js
|
||||
|
||||
# Cython / C extensions
|
||||
|
|
|
@ -399,7 +399,7 @@ one component.
|
|||
> subword_features = true
|
||||
> ```
|
||||
|
||||
Build a transition-based parser model. Can apply to NER or dependency-parsing.
|
||||
Build a transition-based parser model. Can apply to NER or dependency parsing.
|
||||
Transition-based parsing is an approach to structured prediction where the task
|
||||
of predicting the structure is mapped to a series of state transitions. You
|
||||
might find [this tutorial](https://explosion.ai/blog/parsing-english-in-python)
|
||||
|
@ -416,8 +416,6 @@ consists of either two or three subnetworks:
|
|||
state representation. If not present, the output from the lower model is used
|
||||
as action scores directly.
|
||||
|
||||
<!-- TODO: model return type -->
|
||||
|
||||
| Name | Description |
|
||||
| ------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
@ -426,7 +424,7 @@ consists of either two or three subnetworks:
|
|||
| `maxout_pieces` | How many pieces to use in the state prediction layer. Recommended values are `1`, `2` or `3`. If `1`, the maxout non-linearity is replaced with a [`Relu`](https://thinc.ai/docs/api-layers#relu) non-linearity if `use_upper` is `True`, and no non-linearity if `False`. ~~int~~ |
|
||||
| `use_upper` | Whether to use an additional hidden layer after the state vector in order to predict the action scores. It is recommended to set this to `False` for large pretrained models such as transformers, and `True` for smaller networks. The upper layer is computed on CPU, which becomes a bottleneck on larger GPU-based models, where it's also less necessary. ~~bool~~ |
|
||||
| `nO` | The number of actions the model will predict between. Usually inferred from data at the beginning of training, or loaded from disk. ~~int~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model~~ |
|
||||
| **CREATES** | The model using the architecture. ~~Model[List[Docs], List[List[Floats2d]]]~~ |
|
||||
|
||||
### spacy.BILUOTagger.v1 {#BILUOTagger source="spacy/ml/models/simple_ner.py"}
|
||||
|
||||
|
|
|
@ -404,11 +404,15 @@ recipe once the dish has already been prepared. You have to make a new one.
|
|||
spaCy includes a variety of built-in [architectures](/api/architectures) for
|
||||
different tasks. For example:
|
||||
|
||||
<!-- TODO: select example architectures to showcase -->
|
||||
<!-- TODO: model return types -->
|
||||
|
||||
| Architecture | Description |
|
||||
| ----------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [HashEmbedCNN](/api/architectures#HashEmbedCNN) | Build spaCy’s “standard” embedding layer, which uses hash embedding with subword features and a CNN with layer-normalized maxout. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| Architecture | Description |
|
||||
| ----------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [HashEmbedCNN](/api/architectures#HashEmbedCNN) | Build spaCy’s "standard" embedding layer, which uses hash embedding with subword features and a CNN with layer-normalized maxout. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| [TransitionBasedParser](/api/architectures#TransitionBasedParser) | Build a [transition-based parser](https://explosion.ai/blog/parsing-english-in-python) model used in the default [`EntityRecognizer`](/api/entityrecognizer) and [`DependencyParser`](/api/dependencyparser). ~~Model[List[Docs], List[List[Floats2d]]]~~ |
|
||||
| [TextCatEnsemble](/api/architectures#TextCatEnsemble) | Stacked ensemble of a bag-of-words model and a neural network model with an internal CNN embedding layer. Used in the default [`TextCategorizer`](/api/textcategorizer). ~~Model~~ |
|
||||
|
||||
<!-- TODO: link to not yet existing usage page on custom architectures etc. -->
|
||||
|
||||
### Metrics, training output and weighted scores {#metrics}
|
||||
|
||||
|
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user