Add NER training example code

This commit is contained in:
ines 2017-06-01 12:47:47 +02:00
parent 7f5e7e7320
commit 04fac3f52a

View File

@ -37,6 +37,51 @@ p
| #[strong experiment on your own data] to find a solution that works best | #[strong experiment on your own data] to find a solution that works best
| for you. | for you.
+h(2, "example") Example
+code.
import random
from spacy.lang.en import English
from spacy.gold import GoldParse, biluo_tags_from_offsets
def main(model_dir=None):
train_data = [
('Who is Shaka Khan?',
[(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]),
('I like London and Berlin.',
[(len('I like '), len('I like London'), 'LOC'),
(len('I like London and '), len('I like London and Berlin'), 'LOC')])
]
nlp = English(pipeline=['tensorizer', 'ner'])
get_data = lambda: reformat_train_data(nlp.tokenizer, train_data)
optimizer = nlp.begin_training(get_data)
for itn in range(100):
random.shuffle(train_data)
losses = {}
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.update([doc], [gold], drop=0.5, sgd=optimizer, losses=losses)
nlp.to_disk(model_dir)
+code.
def reformat_train_data(tokenizer, examples):
"""Reformat data to match JSON format"""
output = []
for i, (text, entity_offsets) in enumerate(examples):
doc = tokenizer(text)
ner_tags = biluo_tags_from_offsets(tokenizer(text), entity_offsets)
words = [w.text for w in doc]
tags = ['-'] * len(doc)
heads = [0] * len(doc)
deps = [''] * len(doc)
sentence = (range(len(doc)), words, tags, heads, deps, ner_tags)
output.append((text, [(sentence, [])]))
return output
p.u-text-right
+button(gh("spaCy", "examples/training/train_ner.py"), false, "secondary").u-text-tag View full example
+h(2, "saving-loading") Saving and loading +h(2, "saving-loading") Saving and loading
p p