Merge branch 'develop' into pr/6444

This commit is contained in:
Ines Montani 2020-12-09 11:04:03 +11:00
commit 05a2812ae0
51 changed files with 912 additions and 520 deletions

View File

@ -36,3 +36,44 @@ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
scikit-learn
------------
* Files: scorer.py
The following implementation of roc_auc_score() is adapted from
scikit-learn, which is distributed under the following license:
New BSD License
Copyright (c) 20072019 The scikit-learn developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
c. Neither the name of the Scikit-learn Developers nor the names of
its contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

View File

@ -5,7 +5,7 @@ requires = [
"cymem>=2.0.2,<2.1.0", "cymem>=2.0.2,<2.1.0",
"preshed>=3.0.2,<3.1.0", "preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0", "murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.0rc0,<8.1.0", "thinc>=8.0.0rc2,<8.1.0",
"blis>=0.4.0,<0.8.0", "blis>=0.4.0,<0.8.0",
"pathy", "pathy",
"numpy==1.15.0; python_version<='3.7'", "numpy==1.15.0; python_version<='3.7'",

View File

@ -1,7 +1,7 @@
# Our libraries # Our libraries
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.0rc0,<8.1.0 thinc>=8.0.0rc2,<8.1.0
blis>=0.4.0,<0.8.0 blis>=0.4.0,<0.8.0
ml_datasets==0.2.0a0 ml_datasets==0.2.0a0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
@ -15,6 +15,7 @@ numpy>=1.15.0
requests>=2.13.0,<3.0.0 requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0 tqdm>=4.38.0,<5.0.0
pydantic>=1.5.0,<1.7.0 pydantic>=1.5.0,<1.7.0
jinja2
# Official Python utilities # Official Python utilities
setuptools setuptools
packaging>=20.0 packaging>=20.0
@ -26,4 +27,3 @@ pytest>=4.6.5
pytest-timeout>=1.3.0,<2.0.0 pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0 mock>=2.0.0,<3.0.0
flake8>=3.5.0,<3.6.0 flake8>=3.5.0,<3.6.0
jinja2

View File

@ -34,13 +34,13 @@ setup_requires =
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
thinc>=8.0.0rc0,<8.1.0 thinc>=8.0.0rc2,<8.1.0
install_requires = install_requires =
# Our libraries # Our libraries
murmurhash>=0.28.0,<1.1.0 murmurhash>=0.28.0,<1.1.0
cymem>=2.0.2,<2.1.0 cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0 preshed>=3.0.2,<3.1.0
thinc>=8.0.0rc0,<8.1.0 thinc>=8.0.0rc2,<8.1.0
blis>=0.4.0,<0.8.0 blis>=0.4.0,<0.8.0
wasabi>=0.8.0,<1.1.0 wasabi>=0.8.0,<1.1.0
srsly>=2.3.0,<3.0.0 srsly>=2.3.0,<3.0.0

View File

@ -7,7 +7,7 @@ warnings.filterwarnings("ignore", message="numpy.dtype size changed") # noqa
warnings.filterwarnings("ignore", message="numpy.ufunc size changed") # noqa warnings.filterwarnings("ignore", message="numpy.ufunc size changed") # noqa
# These are imported as part of the API # These are imported as part of the API
from thinc.api import prefer_gpu, require_gpu # noqa: F401 from thinc.api import prefer_gpu, require_gpu, require_cpu # noqa: F401
from thinc.api import Config from thinc.api import Config
from . import pipeline # noqa: F401 from . import pipeline # noqa: F401

View File

@ -272,7 +272,11 @@ def show_validation_error(
msg.fail(title) msg.fail(title)
print(err.text.strip()) print(err.text.strip())
if hint_fill and "value_error.missing" in err.error_types: if hint_fill and "value_error.missing" in err.error_types:
config_path = file_path if file_path is not None else "config.cfg" config_path = (
file_path
if file_path is not None and str(file_path) != "-"
else "config.cfg"
)
msg.text( msg.text(
"If your config contains missing values, you can run the 'init " "If your config contains missing values, you can run the 'init "
"fill-config' command to fill in all the defaults, if possible:", "fill-config' command to fill in all the defaults, if possible:",

View File

@ -19,7 +19,7 @@ from .. import util
def debug_config_cli( def debug_config_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
show_funcs: bool = Opt(False, "--show-functions", "-F", help="Show an overview of all registered functions used in the config and where they come from (modules, files etc.)"), show_funcs: bool = Opt(False, "--show-functions", "-F", help="Show an overview of all registered functions used in the config and where they come from (modules, files etc.)"),
show_vars: bool = Opt(False, "--show-variables", "-V", help="Show an overview of all variables referenced in the config and their values. This will also reflect variables overwritten on the CLI.") show_vars: bool = Opt(False, "--show-variables", "-V", help="Show an overview of all variables referenced in the config and their values. This will also reflect variables overwritten on the CLI.")

View File

@ -37,7 +37,7 @@ BLANK_MODEL_THRESHOLD = 2000
def debug_data_cli( def debug_data_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code-path", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"), ignore_warnings: bool = Opt(False, "--ignore-warnings", "-IW", help="Ignore warnings, only show stats and errors"),
verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"), verbose: bool = Opt(False, "--verbose", "-V", help="Print additional information and explanations"),

View File

@ -22,7 +22,7 @@ from .. import util
def debug_model_cli( def debug_model_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"), component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"), layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"), dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),

View File

@ -35,7 +35,7 @@ def download_cli(
def download(model: str, direct: bool = False, *pip_args) -> None: def download(model: str, direct: bool = False, *pip_args) -> None:
if not is_package("spacy") and "--no-deps" not in pip_args: if not (is_package("spacy") or is_package("spacy-nightly")) and "--no-deps" not in pip_args:
msg.warn( msg.warn(
"Skipping pipeline package dependencies and setting `--no-deps`. " "Skipping pipeline package dependencies and setting `--no-deps`. "
"You don't seem to have the spaCy package itself installed " "You don't seem to have the spaCy package itself installed "

View File

@ -5,6 +5,7 @@ from wasabi import Printer, diff_strings
from thinc.api import Config from thinc.api import Config
import srsly import srsly
import re import re
from jinja2 import Template
from .. import util from .. import util
from ..language import DEFAULT_CONFIG_PRETRAIN_PATH from ..language import DEFAULT_CONFIG_PRETRAIN_PATH
@ -127,10 +128,6 @@ def init_config(
) -> None: ) -> None:
is_stdout = str(output_file) == "-" is_stdout = str(output_file) == "-"
msg = Printer(no_print=is_stdout) msg = Printer(no_print=is_stdout)
try:
from jinja2 import Template
except ImportError:
msg.fail("This command requires jinja2", "pip install jinja2", exits=1)
with TEMPLATE_PATH.open("r") as f: with TEMPLATE_PATH.open("r") as f:
template = Template(f.read()) template = Template(f.read())
# Filter out duplicates since tok2vec and transformer are added by template # Filter out duplicates since tok2vec and transformer are added by template

View File

@ -62,7 +62,7 @@ def update_lexemes(nlp: Language, jsonl_loc: Path) -> None:
def init_pipeline_cli( def init_pipeline_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
output_path: Path = Arg(..., help="Output directory for the prepared data"), output_path: Path = Arg(..., help="Output directory for the prepared data"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
@ -88,7 +88,7 @@ def init_pipeline_cli(
def init_labels_cli( def init_labels_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
output_path: Path = Arg(..., help="Output directory for the labels"), output_path: Path = Arg(..., help="Output directory for the labels"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),

View File

@ -103,6 +103,9 @@ def package(
) )
Path.mkdir(package_path, parents=True) Path.mkdir(package_path, parents=True)
shutil.copytree(str(input_dir), str(package_path / model_name_v)) shutil.copytree(str(input_dir), str(package_path / model_name_v))
license_path = package_path / model_name_v / "LICENSE"
if license_path.exists():
shutil.move(str(license_path), str(main_path))
create_file(main_path / "meta.json", srsly.json_dumps(meta, indent=2)) create_file(main_path / "meta.json", srsly.json_dumps(meta, indent=2))
create_file(main_path / "setup.py", TEMPLATE_SETUP) create_file(main_path / "setup.py", TEMPLATE_SETUP)
create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST) create_file(main_path / "MANIFEST.in", TEMPLATE_MANIFEST)
@ -238,7 +241,7 @@ if __name__ == '__main__':
TEMPLATE_MANIFEST = """ TEMPLATE_MANIFEST = """
include meta.json include meta.json
include config.cfg include LICENSE
""".strip() """.strip()

View File

@ -17,7 +17,7 @@ from ..util import load_config
def pretrain_cli( def pretrain_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False), config_path: Path = Arg(..., help="Path to config file", exists=True, dir_okay=False, allow_dash=True),
output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"), output_dir: Path = Arg(..., help="Directory to write weights to on each epoch"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"), resume_path: Optional[Path] = Opt(None, "--resume-path", "-r", help="Path to pretrained weights from which to resume pretraining"),
@ -79,7 +79,7 @@ def pretrain_cli(
def verify_cli_args(config_path, output_dir, resume_path, epoch_resume): def verify_cli_args(config_path, output_dir, resume_path, epoch_resume):
if not config_path or not config_path.exists(): if not config_path or (str(config_path) != "-" and not config_path.exists()):
msg.fail("Config file not found", config_path, exits=1) msg.fail("Config file not found", config_path, exits=1)
if output_dir.exists() and [p for p in output_dir.iterdir()]: if output_dir.exists() and [p for p in output_dir.iterdir()]:
if resume_path: if resume_path:

View File

@ -18,7 +18,7 @@ from .. import util
def train_cli( def train_cli(
# fmt: off # fmt: off
ctx: typer.Context, # This is only used to read additional arguments ctx: typer.Context, # This is only used to read additional arguments
config_path: Path = Arg(..., help="Path to config file", exists=True), config_path: Path = Arg(..., help="Path to config file", exists=True, allow_dash=True),
output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"), output_path: Optional[Path] = Opt(None, "--output", "--output-path", "-o", help="Output directory to store trained pipeline in"),
code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"), code_path: Optional[Path] = Opt(None, "--code", "-c", help="Path to Python file with additional code (registered functions) to be imported"),
verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"), verbose: bool = Opt(False, "--verbose", "-V", "-VV", help="Display more information for debugging purposes"),
@ -41,7 +41,7 @@ def train_cli(
""" """
util.logger.setLevel(logging.DEBUG if verbose else logging.INFO) util.logger.setLevel(logging.DEBUG if verbose else logging.INFO)
# Make sure all files and paths exists if they are needed # Make sure all files and paths exists if they are needed
if not config_path or not config_path.exists(): if not config_path or (str(config_path) != "-" and not config_path.exists()):
msg.fail("Config file not found", config_path, exits=1) msg.fail("Config file not found", config_path, exits=1)
if output_path is not None and not output_path.exists(): if output_path is not None and not output_path.exists():
output_path.mkdir(parents=True) output_path.mkdir(parents=True)

View File

@ -17,7 +17,9 @@ tolerance = 0.2
get_length = null get_length = null
[pretraining.objective] [pretraining.objective]
type = "characters" @architectures = "spacy.PretrainCharacters.v1"
maxout_pieces = 3
hidden_size = 300
n_characters = 4 n_characters = 4
[pretraining.optimizer] [pretraining.optimizer]

View File

@ -125,8 +125,9 @@ class Warnings:
class Errors: class Errors:
E001 = ("No component '{name}' found in pipeline. Available names: {opts}") E001 = ("No component '{name}' found in pipeline. Available names: {opts}")
E002 = ("Can't find factory for '{name}' for language {lang} ({lang_code}). " E002 = ("Can't find factory for '{name}' for language {lang} ({lang_code}). "
"This usually happens when spaCy calls `nlp.{method}` with custom " "This usually happens when spaCy calls `nlp.{method}` with a custom "
"component name that's not registered on the current language class. " "component name that's not registered on the current language class. "
"If you're using a Transformer, make sure to install 'spacy-transformers'. "
"If you're using a custom component, make sure you've added the " "If you're using a custom component, make sure you've added the "
"decorator `@Language.component` (for function components) or " "decorator `@Language.component` (for function components) or "
"`@Language.factory` (for class components).\n\nAvailable " "`@Language.factory` (for class components).\n\nAvailable "
@ -456,6 +457,9 @@ class Errors:
"issue tracker: http://github.com/explosion/spaCy/issues") "issue tracker: http://github.com/explosion/spaCy/issues")
# TODO: fix numbering after merging develop into master # TODO: fix numbering after merging develop into master
E896 = ("There was an error using the static vectors. Ensure that the vectors "
"of the vocab are properly initialized, or set 'include_static_vectors' "
"to False.")
E897 = ("Field '{field}' should be a dot-notation string referring to the " E897 = ("Field '{field}' should be a dot-notation string referring to the "
"relevant section in the config, but found type {type} instead.") "relevant section in the config, but found type {type} instead.")
E898 = ("Can't serialize trainable pipe '{name}': the `model` attribute " E898 = ("Can't serialize trainable pipe '{name}': the `model` attribute "
@ -483,8 +487,8 @@ class Errors:
"has been applied.") "has been applied.")
E905 = ("Cannot initialize StaticVectors layer: nM dimension unset. This " E905 = ("Cannot initialize StaticVectors layer: nM dimension unset. This "
"dimension refers to the width of the vectors table.") "dimension refers to the width of the vectors table.")
E906 = ("Unexpected `loss` value in pretraining objective: {loss_type}") E906 = ("Unexpected `loss` value in pretraining objective: '{found}'. Supported values "
E907 = ("Unexpected `objective_type` value in pretraining objective: {objective_type}") "are: {supported}")
E908 = ("Can't set `spaces` without `words` in `Doc.__init__`.") E908 = ("Can't set `spaces` without `words` in `Doc.__init__`.")
E909 = ("Expected {name} in parser internals. This is likely a bug in spaCy.") E909 = ("Expected {name} in parser internals. This is likely a bug in spaCy.")
E910 = ("Encountered NaN value when computing loss for component '{name}'.") E910 = ("Encountered NaN value when computing loss for component '{name}'.")
@ -712,6 +716,10 @@ class Errors:
E1013 = ("Invalid morph: the MorphAnalysis must have the same vocab as the " E1013 = ("Invalid morph: the MorphAnalysis must have the same vocab as the "
"token itself. To set the morph from this MorphAnalysis, set from " "token itself. To set the morph from this MorphAnalysis, set from "
"the string value with: `token.set_morph(str(other_morph))`.") "the string value with: `token.set_morph(str(other_morph))`.")
E1014 = ("Error loading DocBin data. It doesn't look like the data is in "
"DocBin (.spacy) format. If your data is in spaCy v2's JSON "
"training format, convert it using `python -m spacy convert "
"file.json .`.")
# Deprecated model shortcuts, only used in errors and warnings # Deprecated model shortcuts, only used in errors and warnings

View File

@ -23,10 +23,7 @@ def forward(model: Model, docs, is_train: bool):
keys, vals = model.ops.xp.unique(keys, return_counts=True) keys, vals = model.ops.xp.unique(keys, return_counts=True)
batch_keys.append(keys) batch_keys.append(keys)
batch_vals.append(vals) batch_vals.append(vals)
# The dtype here matches what thinc is expecting -- which differs per lengths = model.ops.asarray([arr.shape[0] for arr in batch_keys], dtype="int32")
# platform (by int definition). This should be fixed once the problem
# is fixed on Thinc's side.
lengths = model.ops.asarray([arr.shape[0] for arr in batch_keys], dtype=numpy.int_)
batch_keys = model.ops.xp.concatenate(batch_keys) batch_keys = model.ops.xp.concatenate(batch_keys)
batch_vals = model.ops.asarray(model.ops.xp.concatenate(batch_vals), dtype="f") batch_vals = model.ops.asarray(model.ops.xp.concatenate(batch_vals), dtype="f")

View File

@ -1,4 +1,5 @@
from .entity_linker import * # noqa from .entity_linker import * # noqa
from .multi_task import * # noqa
from .parser import * # noqa from .parser import * # noqa
from .tagger import * # noqa from .tagger import * # noqa
from .textcat import * # noqa from .textcat import * # noqa

View File

@ -1,7 +1,14 @@
from typing import Optional, Iterable, Tuple, List, TYPE_CHECKING from typing import Optional, Iterable, Tuple, List, Callable, TYPE_CHECKING
import numpy
from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init, Model from thinc.api import chain, Maxout, LayerNorm, Softmax, Linear, zero_init, Model
from thinc.api import MultiSoftmax, list2array from thinc.api import MultiSoftmax, list2array
from thinc.api import to_categorical, CosineDistance, L2Distance
from ...util import registry
from ...errors import Errors
from ...attrs import ID
import numpy
from functools import partial
if TYPE_CHECKING: if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports # This lets us add type hints for mypy etc. without causing circular imports
@ -9,6 +16,74 @@ if TYPE_CHECKING:
from ...tokens import Doc # noqa: F401 from ...tokens import Doc # noqa: F401
@registry.architectures.register("spacy.PretrainVectors.v1")
def create_pretrain_vectors(
maxout_pieces: int, hidden_size: int, loss: str
) -> Callable[["Vocab", Model], Model]:
def create_vectors_objective(vocab: "Vocab", tok2vec: Model) -> Model:
model = build_cloze_multi_task_model(
vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
)
model.attrs["loss"] = create_vectors_loss()
return model
def create_vectors_loss() -> Callable:
if loss == "cosine":
distance = CosineDistance(normalize=True, ignore_zeros=True)
return partial(get_vectors_loss, distance=distance)
elif loss == "L2":
distance = L2Distance(normalize=True)
return partial(get_vectors_loss, distance=distance)
else:
raise ValueError(Errors.E906.format(found=loss, supported="'cosine', 'L2'"))
return create_vectors_objective
@registry.architectures.register("spacy.PretrainCharacters.v1")
def create_pretrain_characters(
maxout_pieces: int, hidden_size: int, n_characters: int
) -> Callable[["Vocab", Model], Model]:
def create_characters_objective(vocab: "Vocab", tok2vec: Model) -> Model:
model = build_cloze_characters_multi_task_model(
vocab,
tok2vec,
hidden_size=hidden_size,
maxout_pieces=maxout_pieces,
nr_char=n_characters,
)
model.attrs["loss"] = partial(get_characters_loss, nr_char=n_characters)
return model
return create_characters_objective
def get_vectors_loss(ops, docs, prediction, distance):
"""Compute a loss based on a distance between the documents' vectors and
the prediction.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_target, loss = distance(prediction, target)
return loss, d_target
def get_characters_loss(ops, docs, prediction, nr_char):
"""Compute a loss based on a number of characters predicted from the docs."""
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
target_ids = target_ids.reshape((-1,))
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
target = target.reshape((-1, 256 * nr_char))
diff = prediction - target
loss = (diff ** 2).sum()
d_target = diff / float(prediction.shape[0])
return loss, d_target
def build_multi_task_model( def build_multi_task_model(
tok2vec: Model, tok2vec: Model,
maxout_pieces: int, maxout_pieces: int,
@ -33,23 +108,19 @@ def build_multi_task_model(
def build_cloze_multi_task_model( def build_cloze_multi_task_model(
vocab: "Vocab", vocab: "Vocab", tok2vec: Model, maxout_pieces: int, hidden_size: int
tok2vec: Model,
maxout_pieces: int,
hidden_size: int,
nO: Optional[int] = None,
) -> Model: ) -> Model:
# nO = vocab.vectors.data.shape[1] nO = vocab.vectors.data.shape[1]
output_layer = chain( output_layer = chain(
list2array(), list2array(),
Maxout( Maxout(
nO=nO, nO=hidden_size,
nI=tok2vec.get_dim("nO"), nI=tok2vec.get_dim("nO"),
nP=maxout_pieces, nP=maxout_pieces,
normalize=True, normalize=True,
dropout=0.0, dropout=0.0,
), ),
Linear(nO=nO, nI=nO, init_W=zero_init), Linear(nO=nO, nI=hidden_size, init_W=zero_init),
) )
model = chain(tok2vec, output_layer) model = chain(tok2vec, output_layer)
model = build_masked_language_model(vocab, model) model = build_masked_language_model(vocab, model)

View File

@ -42,9 +42,13 @@ def forward(
rows = model.ops.flatten( rows = model.ops.flatten(
[doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs] [doc.vocab.vectors.find(keys=doc.to_array(key_attr)) for doc in docs]
) )
try:
vectors_data = model.ops.gemm(model.ops.as_contig(V[rows]), W, trans2=True)
except ValueError:
raise RuntimeError(Errors.E896)
output = Ragged( output = Ragged(
model.ops.gemm(model.ops.as_contig(V[rows]), W, trans2=True), vectors_data,
model.ops.asarray([len(doc) for doc in docs], dtype="i"), model.ops.asarray([len(doc) for doc in docs], dtype="i")
) )
mask = None mask = None
if is_train: if is_train:

View File

@ -67,9 +67,6 @@ class Morphologizer(Tagger):
vocab: Vocab, vocab: Vocab,
model: Model, model: Model,
name: str = "morphologizer", name: str = "morphologizer",
*,
labels_morph: Optional[dict] = None,
labels_pos: Optional[dict] = None,
): ):
"""Initialize a morphologizer. """Initialize a morphologizer.
@ -77,8 +74,6 @@ class Morphologizer(Tagger):
model (thinc.api.Model): The Thinc Model powering the pipeline component. model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the name (str): The component instance name, used to add entries to the
losses during training. losses during training.
labels_morph (dict): Mapping of morph + POS tags to morph labels.
labels_pos (dict): Mapping of morph + POS tags to POS tags.
DOCS: https://nightly.spacy.io/api/morphologizer#init DOCS: https://nightly.spacy.io/api/morphologizer#init
""" """
@ -90,7 +85,7 @@ class Morphologizer(Tagger):
# store mappings from morph+POS labels to token-level annotations: # store mappings from morph+POS labels to token-level annotations:
# 1) labels_morph stores a mapping from morph+POS->morph # 1) labels_morph stores a mapping from morph+POS->morph
# 2) labels_pos stores a mapping from morph+POS->POS # 2) labels_pos stores a mapping from morph+POS->POS
cfg = {"labels_morph": labels_morph or {}, "labels_pos": labels_pos or {}} cfg = {"labels_morph": {}, "labels_pos": {}}
self.cfg = dict(sorted(cfg.items())) self.cfg = dict(sorted(cfg.items()))
@property @property

View File

@ -47,7 +47,7 @@ class MultitaskObjective(Tagger):
side-objective. side-objective.
""" """
def __init__(self, vocab, model, name="nn_labeller", *, labels, target): def __init__(self, vocab, model, name="nn_labeller", *, target):
self.vocab = vocab self.vocab = vocab
self.model = model self.model = model
self.name = name self.name = name
@ -67,7 +67,7 @@ class MultitaskObjective(Tagger):
self.make_label = target self.make_label = target
else: else:
raise ValueError(Errors.E016) raise ValueError(Errors.E016)
cfg = {"labels": labels or {}, "target": target} cfg = {"labels": {}, "target": target}
self.cfg = dict(cfg) self.cfg = dict(cfg)
@property @property
@ -81,15 +81,18 @@ class MultitaskObjective(Tagger):
def set_annotations(self, docs, dep_ids): def set_annotations(self, docs, dep_ids):
pass pass
def initialize(self, get_examples, nlp=None): def initialize(self, get_examples, nlp=None, labels=None):
if not hasattr(get_examples, "__call__"): if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples)) err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples))
raise ValueError(err) raise ValueError(err)
for example in get_examples(): if labels is not None:
for token in example.y: self.labels = labels
label = self.make_label(token) else:
if label is not None and label not in self.labels: for example in get_examples():
self.labels[label] = len(self.labels) for token in example.y:
label = self.make_label(token)
if label is not None and label not in self.labels:
self.labels[label] = len(self.labels)
self.model.initialize() # TODO: fix initialization by defining X and Y self.model.initialize() # TODO: fix initialization by defining X and Y
def predict(self, docs): def predict(self, docs):

View File

@ -61,14 +61,13 @@ class Tagger(TrainablePipe):
DOCS: https://nightly.spacy.io/api/tagger DOCS: https://nightly.spacy.io/api/tagger
""" """
def __init__(self, vocab, model, name="tagger", *, labels=None): def __init__(self, vocab, model, name="tagger"):
"""Initialize a part-of-speech tagger. """Initialize a part-of-speech tagger.
vocab (Vocab): The shared vocabulary. vocab (Vocab): The shared vocabulary.
model (thinc.api.Model): The Thinc Model powering the pipeline component. model (thinc.api.Model): The Thinc Model powering the pipeline component.
name (str): The component instance name, used to add entries to the name (str): The component instance name, used to add entries to the
losses during training. losses during training.
labels (List): The set of labels. Defaults to None.
DOCS: https://nightly.spacy.io/api/tagger#init DOCS: https://nightly.spacy.io/api/tagger#init
""" """
@ -76,7 +75,7 @@ class Tagger(TrainablePipe):
self.model = model self.model = model
self.name = name self.name = name
self._rehearsal_model = None self._rehearsal_model = None
cfg = {"labels": labels or []} cfg = {"labels": []}
self.cfg = dict(sorted(cfg.items())) self.cfg = dict(sorted(cfg.items()))
@property @property

View File

@ -351,9 +351,7 @@ class ConfigSchemaPretrain(BaseModel):
batcher: Batcher = Field(..., title="Batcher for the training data") batcher: Batcher = Field(..., title="Batcher for the training data")
component: str = Field(..., title="Component to find the layer to pretrain") component: str = Field(..., title="Component to find the layer to pretrain")
layer: str = Field(..., title="Layer to pretrain. Whole model if empty.") layer: str = Field(..., title="Layer to pretrain. Whole model if empty.")
objective: Callable[["Vocab", "Model"], "Model"] = Field(..., title="A function that creates the pretraining objective.")
# TODO: use a more detailed schema for this?
objective: Dict[str, Any] = Field(..., title="Pretraining objective")
# fmt: on # fmt: on
class Config: class Config:

View File

@ -720,44 +720,10 @@ def get_ner_prf(examples: Iterable[Example]) -> Dict[str, Any]:
} }
#############################################################################
#
# The following implementation of roc_auc_score() is adapted from # The following implementation of roc_auc_score() is adapted from
# scikit-learn, which is distributed under the following license: # scikit-learn, which is distributed under the New BSD License.
#
# New BSD License
#
# Copyright (c) 20072019 The scikit-learn developers. # Copyright (c) 20072019 The scikit-learn developers.
# All rights reserved. # See licenses/3rd_party_licenses.txt
#
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# a. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# b. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# c. Neither the name of the Scikit-learn Developers nor the names of
# its contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
# DAMAGE.
def _roc_auc_score(y_true, y_score): def _roc_auc_score(y_true, y_score):
"""Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) """Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC)
from prediction scores. from prediction scores.

View File

@ -135,7 +135,7 @@ def test_initialize_examples():
def test_overfitting_IO(): def test_overfitting_IO():
# Simple test to try and quickly overfit the textcat component - ensuring the ML models work correctly # Simple test to try and quickly overfit the single-label textcat component - ensuring the ML models work correctly
fix_random_seed(0) fix_random_seed(0)
nlp = English() nlp = English()
nlp.config["initialize"]["components"]["textcat"] = {"positive_label": "POSITIVE"} nlp.config["initialize"]["components"]["textcat"] = {"positive_label": "POSITIVE"}
@ -177,11 +177,58 @@ def test_overfitting_IO():
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions # Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."] texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_deps_1 = [doc.cats for doc in nlp.pipe(texts)] batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_deps_2 = [doc.cats for doc in nlp.pipe(texts)] batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_deps = [doc.cats for doc in [nlp(text) for text in texts]] no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
assert_equal(batch_deps_1, batch_deps_2) assert_equal(batch_cats_1, batch_cats_2)
assert_equal(batch_deps_1, no_batch_deps) assert_equal(batch_cats_1, no_batch_cats)
def test_overfitting_IO_multi():
# Simple test to try and quickly overfit the multi-label textcat component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
# Set exclusive labels to False
config = {"model": {"linear_model": {"exclusive_classes": False}}}
textcat = nlp.add_pipe("textcat", config=config)
train_examples = []
for text, annotations in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert textcat.model.get_dim("nO") == 2
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["textcat"] < 0.01
# test the trained model
test_text = "I am happy."
doc = nlp(test_text)
cats = doc.cats
assert cats["POSITIVE"] > 0.9
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
cats2 = doc2.cats
assert cats2["POSITIVE"] > 0.9
# Test scoring
scores = nlp.evaluate(train_examples)
assert scores["cats_micro_f"] == 1.0
assert scores["cats_score"] == 1.0
assert "cats_score_desc" in scores
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = ["Just a sentence.", "I like green eggs.", "I am happy.", "I eat ham."]
batch_cats_1 = [doc.cats for doc in nlp.pipe(texts)]
batch_cats_2 = [doc.cats for doc in nlp.pipe(texts)]
no_batch_cats = [doc.cats for doc in [nlp(text) for text in texts]]
assert_equal(batch_cats_1, batch_cats_2)
assert_equal(batch_cats_1, no_batch_cats)
# fmt: off # fmt: off

View File

@ -1,35 +1,38 @@
from thinc.api import fix_random_seed import pytest
from thinc.api import Config, fix_random_seed
from spacy.lang.en import English from spacy.lang.en import English
from spacy.pipeline.textcat import default_model_config, bow_model_config
from spacy.pipeline.textcat import cnn_model_config
from spacy.tokens import Span from spacy.tokens import Span
from spacy import displacy from spacy import displacy
from spacy.pipeline import merge_entities from spacy.pipeline import merge_entities
from spacy.training import Example
def test_issue5551(): @pytest.mark.parametrize(
"textcat_config", [default_model_config, bow_model_config, cnn_model_config]
)
def test_issue5551(textcat_config):
"""Test that after fixing the random seed, the results of the pipeline are truly identical""" """Test that after fixing the random seed, the results of the pipeline are truly identical"""
component = "textcat" component = "textcat"
pipe_cfg = {
"model": { pipe_cfg = Config().from_str(textcat_config)
"@architectures": "spacy.TextCatBOW.v1",
"exclusive_classes": True,
"ngram_size": 2,
"no_output_layer": False,
}
}
results = [] results = []
for i in range(3): for i in range(3):
fix_random_seed(0) fix_random_seed(0)
nlp = English() nlp = English()
example = ( text = "Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g."
"Once hot, form ping-pong-ball-sized balls of the mixture, each weighing roughly 25 g.", annots = {"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}}
{"cats": {"Labe1": 1.0, "Label2": 0.0, "Label3": 0.0}},
)
pipe = nlp.add_pipe(component, config=pipe_cfg, last=True) pipe = nlp.add_pipe(component, config=pipe_cfg, last=True)
for label in set(example[1]["cats"]): for label in set(annots["cats"]):
pipe.add_label(label) pipe.add_label(label)
# Train
nlp.initialize() nlp.initialize()
doc = nlp.make_doc(text)
nlp.update([Example.from_dict(doc, annots)])
# Store the result of each iteration # Store the result of each iteration
result = pipe.model.predict([nlp.make_doc(example[0])]) result = pipe.model.predict([doc])
results.append(list(result[0])) results.append(list(result[0]))
# All results should be the same because of the fixed seed # All results should be the same because of the fixed seed
assert len(results) == 3 assert len(results) == 3

View File

@ -3,15 +3,15 @@ from thinc.api import Config, ConfigValidationError
import spacy import spacy
from spacy.lang.en import English from spacy.lang.en import English
from spacy.lang.de import German from spacy.lang.de import German
from spacy.language import Language, DEFAULT_CONFIG from spacy.language import Language, DEFAULT_CONFIG, DEFAULT_CONFIG_PRETRAIN_PATH
from spacy.util import registry, load_model_from_config from spacy.util import registry, load_model_from_config, load_config
from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model from spacy.ml.models import build_Tok2Vec_model, build_tb_parser_model
from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder from spacy.ml.models import MultiHashEmbed, MaxoutWindowEncoder
from spacy.schemas import ConfigSchema from spacy.schemas import ConfigSchema, ConfigSchemaPretrain
from ..util import make_tempdir from ..util import make_tempdir
nlp_config_string = """ nlp_config_string = """
[paths] [paths]
train = null train = null
@ -63,6 +63,59 @@ factory = "tagger"
width = ${components.tok2vec.model.width} width = ${components.tok2vec.model.width}
""" """
pretrain_config_string = """
[paths]
train = null
dev = null
[corpora]
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
[training]
[training.batcher]
@batchers = "spacy.batch_by_words.v1"
size = 666
[nlp]
lang = "en"
pipeline = ["tok2vec", "tagger"]
[components]
[components.tok2vec]
factory = "tok2vec"
[components.tok2vec.model]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 342
depth = 4
window_size = 1
embed_size = 2000
maxout_pieces = 3
subword_features = true
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
[components.tagger.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.width}
[pretraining]
"""
parser_config_string = """ parser_config_string = """
[model] [model]
@ -126,6 +179,14 @@ def test_create_nlp_from_config():
load_model_from_config(Config(bad_cfg), auto_fill=True) load_model_from_config(Config(bad_cfg), auto_fill=True)
def test_create_nlp_from_pretraining_config():
"""Test that the default pretraining config validates properly"""
config = Config().from_str(pretrain_config_string)
pretrain_config = load_config(DEFAULT_CONFIG_PRETRAIN_PATH)
filled = config.merge(pretrain_config)
resolved = registry.resolve(filled["pretraining"], schema=ConfigSchemaPretrain)
def test_create_nlp_from_config_multiple_instances(): def test_create_nlp_from_config_multiple_instances():
"""Test that the nlp object is created correctly for a config with multiple """Test that the nlp object is created correctly for a config with multiple
instances of the same component.""" instances of the same component."""

View File

@ -4,7 +4,7 @@ import ctypes
from pathlib import Path from pathlib import Path
from spacy.about import __version__ as spacy_version from spacy.about import __version__ as spacy_version
from spacy import util from spacy import util
from spacy import prefer_gpu, require_gpu from spacy import prefer_gpu, require_gpu, require_cpu
from spacy.ml._precomputable_affine import PrecomputableAffine from spacy.ml._precomputable_affine import PrecomputableAffine
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
from spacy.util import dot_to_object, SimpleFrozenList from spacy.util import dot_to_object, SimpleFrozenList
@ -15,6 +15,8 @@ from spacy.lang.nl import Dutch
from spacy.language import DEFAULT_CONFIG_PATH from spacy.language import DEFAULT_CONFIG_PATH
from spacy.schemas import ConfigSchemaTraining from spacy.schemas import ConfigSchemaTraining
from thinc.api import get_current_ops, NumpyOps, CupyOps
from .util import get_random_doc from .util import get_random_doc
@ -81,6 +83,8 @@ def test_PrecomputableAffine(nO=4, nI=5, nF=3, nP=2):
def test_prefer_gpu(): def test_prefer_gpu():
try: try:
import cupy # noqa: F401 import cupy # noqa: F401
prefer_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError: except ImportError:
assert not prefer_gpu() assert not prefer_gpu()
@ -88,10 +92,24 @@ def test_prefer_gpu():
def test_require_gpu(): def test_require_gpu():
try: try:
import cupy # noqa: F401 import cupy # noqa: F401
require_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError: except ImportError:
with pytest.raises(ValueError): with pytest.raises(ValueError):
require_gpu() require_gpu()
def test_require_cpu():
require_cpu()
assert isinstance(get_current_ops(), NumpyOps)
try:
import cupy # noqa: F401
require_gpu()
assert isinstance(get_current_ops(), CupyOps)
except ImportError:
pass
require_cpu()
assert isinstance(get_current_ops(), NumpyOps)
def test_ascii_filenames(): def test_ascii_filenames():
"""Test that all filenames in the project are ASCII. """Test that all filenames in the project are ASCII.

View File

@ -2,6 +2,7 @@ import pytest
from spacy.vocab import Vocab from spacy.vocab import Vocab
from spacy.tokenizer import Tokenizer from spacy.tokenizer import Tokenizer
from spacy.util import ensure_path from spacy.util import ensure_path
from spacy.lang.en import English
def test_tokenizer_handles_no_word(tokenizer): def test_tokenizer_handles_no_word(tokenizer):
@ -150,6 +151,22 @@ def test_tokenizer_special_cases_with_affixes(tokenizer):
] ]
def test_tokenizer_special_cases_with_affixes_preserve_spacy():
tokenizer = English().tokenizer
# reset all special cases
tokenizer.rules = {}
# in-place modification (only merges)
text = "''a'' "
tokenizer.add_special_case("''", [{"ORTH": "''"}])
assert tokenizer(text).text == text
# not in-place (splits and merges)
tokenizer.add_special_case("ab", [{"ORTH": "a"}, {"ORTH": "b"}])
text = "ab ab ab ''ab ab'' ab'' ''ab"
assert tokenizer(text).text == text
def test_tokenizer_special_cases_with_period(tokenizer): def test_tokenizer_special_cases_with_period(tokenizer):
text = "_SPECIAL_." text = "_SPECIAL_."
tokenizer.add_special_case("_SPECIAL_", [{"orth": "_SPECIAL_"}]) tokenizer.add_special_case("_SPECIAL_", [{"orth": "_SPECIAL_"}])

View File

@ -72,6 +72,10 @@ def test_readers():
def test_cat_readers(reader, additional_config): def test_cat_readers(reader, additional_config):
nlp_config_string = """ nlp_config_string = """
[training] [training]
seed = 0
[training.score_weights]
cats_macro_auc = 1.0
[corpora] [corpora]
@readers = "PLACEHOLDER" @readers = "PLACEHOLDER"
@ -92,9 +96,7 @@ def test_cat_readers(reader, additional_config):
config["corpora"]["@readers"] = reader config["corpora"]["@readers"] = reader
config["corpora"].update(additional_config) config["corpora"].update(additional_config)
nlp = load_model_from_config(config, auto_fill=True) nlp = load_model_from_config(config, auto_fill=True)
T = registry.resolve( T = registry.resolve(nlp.config["training"], schema=ConfigSchemaTraining)
nlp.config["training"].interpolate(), schema=ConfigSchemaTraining
)
dot_names = [T["train_corpus"], T["dev_corpus"]] dot_names = [T["train_corpus"], T["dev_corpus"]]
train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names) train_corpus, dev_corpus = resolve_dot_names(nlp.config, dot_names)
optimizer = T["optimizer"] optimizer = T["optimizer"]

View File

@ -514,6 +514,11 @@ def test_roundtrip_docs_to_docbin(doc):
([[0], [1], [2, 3]], [[0], [1], [2], [2]]), ([[0], [1], [2, 3]], [[0], [1], [2], [2]]),
), ),
([" ", "a"], ["a"], ([[], [0]], [[1]])), ([" ", "a"], ["a"], ([[], [0]], [[1]])),
(
["a", "''", "'", ","],
["a'", "''", ","],
([[0], [0, 1], [1], [2]], [[0, 1], [1, 2], [3]]),
),
], ],
) )
def test_align(tokens_a, tokens_b, expected): # noqa def test_align(tokens_a, tokens_b, expected): # noqa
@ -698,7 +703,7 @@ def test_alignment_spaces(en_vocab):
align = Alignment.from_strings(other_tokens, spacy_tokens) align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1] assert list(align.x2y.lengths) == [0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2,] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [1, 1, 1, 2, 3, 4, 5, 6] assert list(align.y2x.dataXd) == [1, 1, 1, 2, 3, 4, 5, 6]
# multiple leading whitespace tokens # multiple leading whitespace tokens
@ -707,7 +712,7 @@ def test_alignment_spaces(en_vocab):
align = Alignment.from_strings(other_tokens, spacy_tokens) align = Alignment.from_strings(other_tokens, spacy_tokens)
assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1] assert list(align.x2y.lengths) == [0, 0, 3, 1, 1, 1, 1, 1]
assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5] assert list(align.x2y.dataXd) == [0, 1, 2, 3, 4, 4, 5, 5]
assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2,] assert list(align.y2x.lengths) == [1, 1, 1, 1, 2, 2]
assert list(align.y2x.dataXd) == [2, 2, 2, 3, 4, 5, 6, 7] assert list(align.y2x.dataXd) == [2, 2, 2, 3, 4, 5, 6, 7]
# both with leading whitespace, not identical # both with leading whitespace, not identical

View File

@ -338,7 +338,7 @@ cdef class Tokenizer:
# Copy special case tokens into doc and adjust token and # Copy special case tokens into doc and adjust token and
# character offsets # character offsets
idx_offset = 0 idx_offset = 0
orig_final_spacy = doc.c[span_end + offset - 1].spacy orig_final_spacy = doc.c[span_end - 1].spacy
orig_idx = doc.c[i].idx orig_idx = doc.c[i].idx
for j in range(cached.length): for j in range(cached.length):
tokens[i + offset + j] = cached.data.tokens[j] tokens[i + offset + j] = cached.data.tokens[j]

View File

@ -198,7 +198,10 @@ class DocBin:
DOCS: https://nightly.spacy.io/api/docbin#from_bytes DOCS: https://nightly.spacy.io/api/docbin#from_bytes
""" """
msg = srsly.msgpack_loads(zlib.decompress(bytes_data)) try:
msg = srsly.msgpack_loads(zlib.decompress(bytes_data))
except zlib.error:
raise ValueError(Errors.E1014)
self.attrs = msg["attrs"] self.attrs = msg["attrs"]
self.strings = set(msg["strings"]) self.strings = set(msg["strings"])
lengths = numpy.frombuffer(msg["lengths"], dtype="int32") lengths = numpy.frombuffer(msg["lengths"], dtype="int32")

View File

@ -7,8 +7,8 @@ from ..errors import Errors
def get_alignments(A: List[str], B: List[str]) -> Tuple[List[List[int]], List[List[int]]]: def get_alignments(A: List[str], B: List[str]) -> Tuple[List[List[int]], List[List[int]]]:
# Create character-to-token mappings # Create character-to-token mappings
char_to_token_a = tuple(chain(*((i,) * len(x) for i, x in enumerate(A)))) char_to_token_a = tuple(chain(*((i,) * len(x.lower()) for i, x in enumerate(A))))
char_to_token_b = tuple(chain(*((i,) * len(x) for i, x in enumerate(B)))) char_to_token_b = tuple(chain(*((i,) * len(x.lower()) for i, x in enumerate(B))))
str_a = "".join(A).lower() str_a = "".join(A).lower()
str_b = "".join(B).lower() str_b = "".join(B).lower()
cdef int len_str_a = len(str_a) cdef int len_str_a = len(str_a)
@ -36,8 +36,14 @@ def get_alignments(A: List[str], B: List[str]) -> Tuple[List[List[int]], List[Li
if prev_token_idx_b != token_idx_b: if prev_token_idx_b != token_idx_b:
b2a.append(set()) b2a.append(set())
# Process the alignment at the current position # Process the alignment at the current position
if A[token_idx_a] == B[token_idx_b]: if A[token_idx_a] == B[token_idx_b] and \
# Current tokens are identical (char_idx_a == 0 or \
char_to_token_a[char_idx_a - 1] < token_idx_a) and \
(char_idx_b == 0 or \
char_to_token_b[char_idx_b - 1] < token_idx_b):
# Current tokens are identical and both character offsets are the
# start of a token (either at the beginning of the document or the
# previous character belongs to a different token)
a2b[-1].add(token_idx_b) a2b[-1].add(token_idx_b)
b2a[-1].add(token_idx_a) b2a[-1].add(token_idx_a)
char_idx_a += len(A[token_idx_a]) char_idx_a += len(A[token_idx_a])

View File

@ -103,7 +103,7 @@ def load_vectors_into_model(
"with the packaged vectors. Make sure that the vectors package you're " "with the packaged vectors. Make sure that the vectors package you're "
"loading is compatible with the current version of spaCy." "loading is compatible with the current version of spaCy."
) )
err = ConfigValidationError.from_error(e, config=None, title=title, desc=desc) err = ConfigValidationError.from_error(e, title=title, desc=desc)
raise err from None raise err from None
nlp.vocab.vectors = vectors_nlp.vocab.vectors nlp.vocab.vectors = vectors_nlp.vocab.vectors
if add_strings: if add_strings:

View File

@ -28,7 +28,7 @@ def train(
use_gpu: int = -1, use_gpu: int = -1,
stdout: IO = sys.stdout, stdout: IO = sys.stdout,
stderr: IO = sys.stderr, stderr: IO = sys.stderr,
) -> None: ) -> Tuple["Language", Optional[Path]]:
"""Train a pipeline. """Train a pipeline.
nlp (Language): The initialized nlp object with the full config. nlp (Language): The initialized nlp object with the full config.
@ -40,7 +40,7 @@ def train(
stderr (file): A second file-like object to write output messages. To disable stderr (file): A second file-like object to write output messages. To disable
printing, set to io.StringIO. printing, set to io.StringIO.
RETURNS (Path / None): The path to the final exported model. RETURNS (tuple): The final nlp object and the path to the exported model.
""" """
# We use no_print here so we can respect the stdout/stderr options. # We use no_print here so we can respect the stdout/stderr options.
msg = Printer(no_print=True) msg = Printer(no_print=True)
@ -105,17 +105,18 @@ def train(
raise e raise e
finally: finally:
finalize_logger() finalize_logger()
if optimizer.averages:
nlp.use_params(optimizer.averages)
if output_path is not None: if output_path is not None:
final_model_path = output_path / DIR_MODEL_LAST final_model_path = output_path / DIR_MODEL_LAST
if optimizer.averages: nlp.to_disk(final_model_path)
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
else:
nlp.to_disk(final_model_path)
# This will only run if we don't hit an error # This will only run if we don't hit an error
stdout.write( stdout.write(
msg.good("Saved pipeline to output directory", final_model_path) + "\n" msg.good("Saved pipeline to output directory", final_model_path) + "\n"
) )
return (nlp, final_model_path)
else:
return (nlp, None)
def train_while_improving( def train_while_improving(

View File

@ -1,23 +1,17 @@
from typing import Optional, Callable, Iterable, Union, List from typing import Optional, Callable, Iterable, Union, List
from thinc.api import Config, fix_random_seed, set_gpu_allocator, Model, Optimizer from thinc.api import Config, fix_random_seed, set_gpu_allocator, Model, Optimizer
from thinc.api import set_dropout_rate, to_categorical, CosineDistance, L2Distance from thinc.api import set_dropout_rate
from pathlib import Path from pathlib import Path
from functools import partial
from collections import Counter from collections import Counter
import srsly import srsly
import numpy
import time import time
import re import re
from wasabi import Printer from wasabi import Printer
from .example import Example from .example import Example
from ..tokens import Doc from ..tokens import Doc
from ..attrs import ID
from ..ml.models.multi_task import build_cloze_multi_task_model
from ..ml.models.multi_task import build_cloze_characters_multi_task_model
from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain from ..schemas import ConfigSchemaTraining, ConfigSchemaPretrain
from ..errors import Errors from ..util import registry, load_model_from_config, dot_to_object
from ..util import registry, load_model_from_config, resolve_dot_names
def pretrain( def pretrain(
@ -38,7 +32,8 @@ def pretrain(
_config = nlp.config.interpolate() _config = nlp.config.interpolate()
T = registry.resolve(_config["training"], schema=ConfigSchemaTraining) T = registry.resolve(_config["training"], schema=ConfigSchemaTraining)
P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain) P = registry.resolve(_config["pretraining"], schema=ConfigSchemaPretrain)
corpus = resolve_dot_names(_config, [P["corpus"]])[0] corpus = dot_to_object(_config, P["corpus"])
corpus = registry.resolve({"corpus": corpus})["corpus"]
batcher = P["batcher"] batcher = P["batcher"]
model = create_pretraining_model(nlp, P) model = create_pretraining_model(nlp, P)
optimizer = P["optimizer"] optimizer = P["optimizer"]
@ -48,6 +43,7 @@ def pretrain(
else: else:
# Without '--resume-path' the '--epoch-resume' argument is ignored # Without '--resume-path' the '--epoch-resume' argument is ignored
epoch_resume = 0 epoch_resume = 0
objective = model.attrs["loss"]
# TODO: move this to logger function? # TODO: move this to logger function?
tracker = ProgressTracker(frequency=10000) tracker = ProgressTracker(frequency=10000)
msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}") msg.divider(f"Pre-training tok2vec layer - starting at epoch {epoch_resume}")
@ -68,7 +64,6 @@ def pretrain(
with (output_dir / "log.jsonl").open("a") as file_: with (output_dir / "log.jsonl").open("a") as file_:
file_.write(srsly.json_dumps(log) + "\n") file_.write(srsly.json_dumps(log) + "\n")
objective = create_objective(P["objective"])
# TODO: I think we probably want this to look more like the # TODO: I think we probably want this to look more like the
# 'create_train_batches' function? # 'create_train_batches' function?
for epoch in range(epoch_resume, P["max_epochs"]): for epoch in range(epoch_resume, P["max_epochs"]):
@ -131,58 +126,6 @@ def make_update(
return float(loss) return float(loss)
def create_objective(config: Config):
"""Create the objective for pretraining.
We'd like to replace this with a registry function but it's tricky because
we're also making a model choice based on this. For now we hard-code support
for two types (characters, vectors). For characters you can specify
n_characters, for vectors you can specify the loss.
Bleh.
"""
objective_type = config["type"]
if objective_type == "characters":
return partial(get_characters_loss, nr_char=config["n_characters"])
elif objective_type == "vectors":
if config["loss"] == "cosine":
distance = CosineDistance(normalize=True, ignore_zeros=True)
return partial(get_vectors_loss, distance=distance)
elif config["loss"] == "L2":
distance = L2Distance(normalize=True, ignore_zeros=True)
return partial(get_vectors_loss, distance=distance)
else:
raise ValueError(Errors.E906.format(loss_type=config["loss"]))
else:
raise ValueError(Errors.E907.format(objective_type=objective_type))
def get_vectors_loss(ops, docs, prediction, distance):
"""Compute a loss based on a distance between the documents' vectors and
the prediction.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_target, loss = distance(prediction, target)
return loss, d_target
def get_characters_loss(ops, docs, prediction, nr_char):
"""Compute a loss based on a number of characters predicted from the docs."""
target_ids = numpy.vstack([doc.to_utf8_array(nr_char=nr_char) for doc in docs])
target_ids = target_ids.reshape((-1,))
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
target = target.reshape((-1, 256 * nr_char))
diff = prediction - target
loss = (diff ** 2).sum()
d_target = diff / float(prediction.shape[0])
return loss, d_target
def create_pretraining_model(nlp, pretrain_config): def create_pretraining_model(nlp, pretrain_config):
"""Define a network for the pretraining. We simply add an output layer onto """Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that the tok2vec input model. The tok2vec input model needs to be a model that
@ -191,27 +134,15 @@ def create_pretraining_model(nlp, pretrain_config):
The actual tok2vec layer is stored as a reference, and only this bit will be The actual tok2vec layer is stored as a reference, and only this bit will be
serialized to file and read back in when calling the 'train' command. serialized to file and read back in when calling the 'train' command.
""" """
nlp.initialize()
component = nlp.get_pipe(pretrain_config["component"]) component = nlp.get_pipe(pretrain_config["component"])
if pretrain_config.get("layer"): if pretrain_config.get("layer"):
tok2vec = component.model.get_ref(pretrain_config["layer"]) tok2vec = component.model.get_ref(pretrain_config["layer"])
else: else:
tok2vec = component.model tok2vec = component.model
# TODO create_function = pretrain_config["objective"]
maxout_pieces = 3 model = create_function(nlp.vocab, tok2vec)
hidden_size = 300
if pretrain_config["objective"]["type"] == "vectors":
model = build_cloze_multi_task_model(
nlp.vocab, tok2vec, hidden_size=hidden_size, maxout_pieces=maxout_pieces
)
elif pretrain_config["objective"]["type"] == "characters":
model = build_cloze_characters_multi_task_model(
nlp.vocab,
tok2vec,
hidden_size=hidden_size,
maxout_pieces=maxout_pieces,
nr_char=pretrain_config["objective"]["n_characters"],
)
model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")]) model.initialize(X=[nlp.make_doc("Give it a doc to infer shapes")])
set_dropout_rate(model, pretrain_config["dropout"]) set_dropout_rate(model, pretrain_config["dropout"])
return model return model

View File

@ -465,18 +465,24 @@ def load_config(
) -> Config: ) -> Config:
"""Load a config file. Takes care of path validation and section order. """Load a config file. Takes care of path validation and section order.
path (Union[str, Path]): Path to the config file. path (Union[str, Path]): Path to the config file or "-" to read from stdin.
overrides: (Dict[str, Any]): Config overrides as nested dict or overrides: (Dict[str, Any]): Config overrides as nested dict or
dict keyed by section values in dot notation. dict keyed by section values in dot notation.
interpolate (bool): Whether to interpolate and resolve variables. interpolate (bool): Whether to interpolate and resolve variables.
RETURNS (Config): The loaded config. RETURNS (Config): The loaded config.
""" """
config_path = ensure_path(path) config_path = ensure_path(path)
if not config_path.exists() or not config_path.is_file(): config = Config(section_order=CONFIG_SECTION_ORDER)
raise IOError(Errors.E053.format(path=config_path, name="config.cfg")) if str(config_path) == "-": # read from standard input
return Config(section_order=CONFIG_SECTION_ORDER).from_disk( return config.from_str(
config_path, overrides=overrides, interpolate=interpolate sys.stdin.read(), overrides=overrides, interpolate=interpolate
) )
else:
if not config_path or not config_path.exists() or not config_path.is_file():
raise IOError(Errors.E053.format(path=config_path, name="config.cfg"))
return config.from_disk(
config_path, overrides=overrides, interpolate=interpolate
)
def load_config_from_str( def load_config_from_str(

View File

@ -143,10 +143,10 @@ argument that connects to the shared `tok2vec` component in the pipeline.
Construct an embedding layer that separately embeds a number of lexical Construct an embedding layer that separately embeds a number of lexical
attributes using hash embedding, concatenates the results, and passes it through attributes using hash embedding, concatenates the results, and passes it through
a feed-forward subnetwork to build a mixed representation. The features used a feed-forward subnetwork to build a mixed representation. The features used can
can be configured with the `attrs` argument. The suggested attributes are be configured with the `attrs` argument. The suggested attributes are `NORM`,
`NORM`, `PREFIX`, `SUFFIX` and `SHAPE`. This lets the model take into account `PREFIX`, `SUFFIX` and `SHAPE`. This lets the model take into account some
some subword information, without construction a fully character-based subword information, without construction a fully character-based
representation. If pretrained vectors are available, they can be included in the representation. If pretrained vectors are available, they can be included in the
representation as well, with the vectors table will be kept static (i.e. it's representation as well, with the vectors table will be kept static (i.e. it's
not updated). not updated).
@ -393,11 +393,12 @@ operate over wordpieces, which usually don't align one-to-one against spaCy
tokens. The layer therefore requires a reduction operation in order to calculate tokens. The layer therefore requires a reduction operation in order to calculate
a single token vector given zero or more wordpiece vectors. a single token vector given zero or more wordpiece vectors.
| Name | Description | | Name | Description |
| ------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `pooling` | A reduction layer used to calculate the token vectors based on zero or more wordpiece vectors. If in doubt, mean pooling (see [`reduce_mean`](https://thinc.ai/docs/api-layers#reduce_mean)) is usually a good choice. ~~Model[Ragged, Floats2d]~~ | | `pooling` | A reduction layer used to calculate the token vectors based on zero or more wordpiece vectors. If in doubt, mean pooling (see [`reduce_mean`](https://thinc.ai/docs/api-layers#reduce_mean)) is usually a good choice. ~~Model[Ragged, Floats2d]~~ |
| `grad_factor` | Reweight gradients from the component before passing them upstream. You can set this to `0` to "freeze" the transformer weights with respect to the component, or use it to make some components more significant than others. Leaving it at `1.0` is usually fine. ~~float~~ | | `grad_factor` | Reweight gradients from the component before passing them upstream. You can set this to `0` to "freeze" the transformer weights with respect to the component, or use it to make some components more significant than others. Leaving it at `1.0` is usually fine. ~~float~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ | | `upstream` | A string to identify the "upstream" `Transformer` component to communicate with. By default, the upstream name is the wildcard string `"*"`, but you could also specify the name of the `Transformer` component. You'll almost never have multiple upstream `Transformer` components, so the wildcard string will almost always be fine. ~~str~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
### spacy-transformers.Tok2VecTransformer.v1 {#Tok2VecTransformer} ### spacy-transformers.Tok2VecTransformer.v1 {#Tok2VecTransformer}
@ -563,7 +564,8 @@ from the linear model, where it is stored in `model.attrs["multi_label"]`.
<Accordion title="spacy.TextCatEnsemble.v1 definition" spaced> <Accordion title="spacy.TextCatEnsemble.v1 definition" spaced>
The v1 was functionally similar, but used an internal `tok2vec` instead of taking it as argument. The v1 was functionally similar, but used an internal `tok2vec` instead of
taking it as argument.
| Name | Description | | Name | Description |
| -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | -------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |

View File

@ -126,7 +126,7 @@ $ python -m spacy init config [output_file] [--lang] [--pipeline] [--optimize] [
| Name | Description | | Name | Description |
| ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ | | `output_file` | Path to output `.cfg` file or `-` to write the config to stdout (so you can pipe it forward to a file or to the `train` command). Note that if you're writing to stdout, no additional logging info is printed. ~~Path (positional)~~ |
| `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ | | `--lang`, `-l` | Optional code of the [language](/usage/models#languages) to use. Defaults to `"en"`. ~~str (option)~~ |
| `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ | | `--pipeline`, `-p` | Comma-separated list of trainable [pipeline components](/usage/processing-pipelines#built-in) to include. Defaults to `"tagger,parser,ner"`. ~~str (option)~~ |
| `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ | | `--optimize`, `-o` | `"efficiency"` or `"accuracy"`. Whether to optimize for efficiency (faster inference, smaller model, lower memory consumption) or higher accuracy (potentially larger and slower model). This will impact the choice of architecture, pretrained weights and related hyperparameters. Defaults to `"efficiency"`. ~~str (option)~~ |
@ -223,16 +223,16 @@ After generating the labels, you can provide them to components that accept a
$ python -m spacy init labels [config_path] [output_path] [--code] [--verbose] [--gpu-id] [overrides] $ python -m spacy init labels [config_path] [output_path] [--code] [--verbose] [--gpu-id] [overrides]
``` ```
| Name | Description | | Name | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `output_path` | Output directory for the label files. Will create one JSON file per component. ~~Path (positional)~~ | | `output_path` | Output directory for the label files. Will create one JSON file per component. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ | | `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ | | `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **CREATES** | The best trained pipeline and the final checkpoint (if training is terminated). | | **CREATES** | The best trained pipeline and the final checkpoint (if training is terminated). |
## convert {#convert tag="command"} ## convert {#convert tag="command"}
@ -428,7 +428,7 @@ File /path/to/thinc/thinc/schedules.py (line 91)
| Name | Description | | Name | Description |
| ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--show-functions`, `-F` | Show an overview of all registered function blocks used in the config and where those functions come from, including the module name, Python file and line number. ~~bool (flag)~~ | | `--show-functions`, `-F` | Show an overview of all registered function blocks used in the config and where those functions come from, including the module name, Python file and line number. ~~bool (flag)~~ |
| `--show-variables`, `-V` | Show an overview of all variables referenced in the config, e.g. `${paths.train}` and their values that will be used. This also reflects any config overrides provided on the CLI, e.g. `--paths.train /path`. ~~bool (flag)~~ | | `--show-variables`, `-V` | Show an overview of all variables referenced in the config, e.g. `${paths.train}` and their values that will be used. This also reflects any config overrides provided on the CLI, e.g. `--paths.train /path`. ~~bool (flag)~~ |
@ -600,16 +600,16 @@ will not be available.
</Accordion> </Accordion>
| Name | Description | | Name | Description |
| -------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | -------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--ignore-warnings`, `-IW` | Ignore warnings, only show stats and errors. ~~bool (flag)~~ | | `--ignore-warnings`, `-IW` | Ignore warnings, only show stats and errors. ~~bool (flag)~~ |
| `--verbose`, `-V` | Print additional information and explanations. ~~bool (flag)~~ | | `--verbose`, `-V` | Print additional information and explanations. ~~bool (flag)~~ |
| `--no-format`, `-NF` | Don't pretty-print the results. Use this if you want to write to a file. ~~bool (flag)~~ | | `--no-format`, `-NF` | Don't pretty-print the results. Use this if you want to write to a file. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **PRINTS** | Debugging information. | | **PRINTS** | Debugging information. |
### debug profile {#debug-profile tag="command"} ### debug profile {#debug-profile tag="command"}
@ -742,22 +742,22 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
</Accordion> </Accordion>
| Name | Description | | Name | Description |
| ----------------------- | --------------------------------------------------------------------------------------------------------------------------- | | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `component` | Name of the pipeline component of which the model should be analyzed. ~~str (positional)~~ | | `component` | Name of the pipeline component of which the model should be analyzed. ~~str (positional)~~ |
| `--layers`, `-l` | Comma-separated names of layer IDs to print. ~~str (option)~~ | | `--layers`, `-l` | Comma-separated names of layer IDs to print. ~~str (option)~~ |
| `--dimensions`, `-DIM` | Show dimensions of each layer. ~~bool (flag)~~ | | `--dimensions`, `-DIM` | Show dimensions of each layer. ~~bool (flag)~~ |
| `--parameters`, `-PAR` | Show parameters of each layer. ~~bool (flag)~~ | | `--parameters`, `-PAR` | Show parameters of each layer. ~~bool (flag)~~ |
| `--gradients`, `-GRAD` | Show gradients of each layer. ~~bool (flag)~~ | | `--gradients`, `-GRAD` | Show gradients of each layer. ~~bool (flag)~~ |
| `--attributes`, `-ATTR` | Show attributes of each layer. ~~bool (flag)~~ | | `--attributes`, `-ATTR` | Show attributes of each layer. ~~bool (flag)~~ |
| `--print-step0`, `-P0` | Print model before training. ~~bool (flag)~~ | | `--print-step0`, `-P0` | Print model before training. ~~bool (flag)~~ |
| `--print-step1`, `-P1` | Print model after initialization. ~~bool (flag)~~ | | `--print-step1`, `-P1` | Print model after initialization. ~~bool (flag)~~ |
| `--print-step2`, `-P2` | Print model after training. ~~bool (flag)~~ | | `--print-step2`, `-P2` | Print model after training. ~~bool (flag)~~ |
| `--print-step3`, `-P3` | Print final predictions. ~~bool (flag)~~ | | `--print-step3`, `-P3` | Print final predictions. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ | | `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **PRINTS** | Debugging information. | | **PRINTS** | Debugging information. |
## train {#train tag="command"} ## train {#train tag="command"}
@ -787,16 +787,16 @@ in the section `[paths]`.
$ python -m spacy train [config_path] [--output] [--code] [--verbose] [--gpu-id] [overrides] $ python -m spacy train [config_path] [--output] [--code] [--verbose] [--gpu-id] [overrides]
``` ```
| Name | Description | | Name | Description |
| ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ----------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `--output`, `-o` | Directory to store trained pipeline in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ | | `--output`, `-o` | Directory to store trained pipeline in. Will be created if it doesn't exist. ~~Optional[Path] \(positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ | | `--verbose`, `-V` | Show more detailed messages during training. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ | | `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
| **CREATES** | The final trained pipeline and the best trained pipeline. | | **CREATES** | The final trained pipeline and the best trained pipeline. |
## pretrain {#pretrain new="2.1" tag="command,experimental"} ## pretrain {#pretrain new="2.1" tag="command,experimental"}
@ -827,17 +827,17 @@ auto-generated by setting `--pretraining` on
$ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [--epoch-resume] [--gpu-id] [overrides] $ python -m spacy pretrain [config_path] [output_dir] [--code] [--resume-path] [--epoch-resume] [--gpu-id] [overrides]
``` ```
| Name | Description | | Name | Description |
| ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | ----------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. ~~Path (positional)~~ | | `config_path` | Path to [training config](/api/data-formats#config) file containing all settings and hyperparameters. If `-`, the data will be [read from stdin](/usage/training#config-stdin). ~~Union[Path, str] \(positional)~~ |
| `output_dir` | Directory to save binary weights to on each epoch. ~~Path (positional)~~ | | `output_dir` | Directory to save binary weights to on each epoch. ~~Path (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | | `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ | | `--resume-path`, `-r` | Path to pretrained weights from which to resume pretraining. ~~Optional[Path] \(option)~~ |
| `--epoch-resume`, `-er` | The epoch to resume counting from when using `--resume-path`. Prevents unintended overwriting of existing weight files. ~~Optional[int] \(option)~~ | | `--epoch-resume`, `-er` | The epoch to resume counting from when using `--resume-path`. Prevents unintended overwriting of existing weight files. ~~Optional[int] \(option)~~ |
| `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ | | `--gpu-id`, `-g` | GPU ID or `-1` for CPU. Defaults to `-1`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--training.dropout 0.2`. ~~Any (option/flag)~~ | | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--training.dropout 0.2`. ~~Any (option/flag)~~ |
| **CREATES** | The pretrained weights that can be used to initialize `spacy train`. | | **CREATES** | The pretrained weights that can be used to initialize `spacy train`. |
## evaluate {#evaluate new="2" tag="command"} ## evaluate {#evaluate new="2" tag="command"}

View File

@ -66,9 +66,6 @@ shortcut for this and instantiate the component using its string name and
| `vocab` | The shared vocabulary. ~~Vocab~~ | | `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ | | `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `labels_morph` | Mapping of morph + POS tags to morph labels. ~~Dict[str, str]~~ |
| `labels_pos` | Mapping of morph + POS tags to POS tags. ~~Dict[str, str]~~ |
## Morphologizer.\_\_call\_\_ {#call tag="method"} ## Morphologizer.\_\_call\_\_ {#call tag="method"}

View File

@ -21,16 +21,12 @@ architectures and their arguments and hyperparameters.
> >
> ```python > ```python
> from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL > from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
> config = { > config = {"model": DEFAULT_TAGGER_MODEL}
> "set_morphology": False,
> "model": DEFAULT_TAGGER_MODEL,
> }
> nlp.add_pipe("tagger", config=config) > nlp.add_pipe("tagger", config=config)
> ``` > ```
| Setting | Description | | Setting | Description |
| ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ---------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `set_morphology` | Whether to set morphological features. Defaults to `False`. ~~bool~~ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ | | `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). Defaults to [Tagger](/api/architectures#Tagger). ~~Model[List[Doc], List[Floats2d]]~~ |
```python ```python
@ -63,8 +59,6 @@ shortcut for this and instantiate the component using its string name and
| `vocab` | The shared vocabulary. ~~Vocab~~ | | `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ | | `model` | A model instance that predicts the tag probabilities. The output vectors should match the number of tags in size, and be normalized as probabilities (all scores between 0 and 1, with the rows summing to `1`). ~~Model[List[Doc], List[Floats2d]]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ | | `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `set_morphology` | Whether to set morphological features. ~~bool~~ |
## Tagger.\_\_call\_\_ {#call tag="method"} ## Tagger.\_\_call\_\_ {#call tag="method"}

View File

@ -171,6 +171,25 @@ and _before_ loading any pipelines.
| `gpu_id` | Device index to select. Defaults to `0`. ~~int~~ | | `gpu_id` | Device index to select. Defaults to `0`. ~~int~~ |
| **RETURNS** | `True` ~~bool~~ | | **RETURNS** | `True` ~~bool~~ |
### spacy.require_cpu {#spacy.require_cpu tag="function" new="3.0.0"}
Allocate data and perform operations on CPU.
If data has already been allocated on GPU, it will not
be moved. Ideally, this function should be called right after importing spaCy
and _before_ loading any pipelines.
> #### Example
>
> ```python
> import spacy
> spacy.require_cpu()
> nlp = spacy.load("en_core_web_sm")
> ```
| Name | Description |
| ----------- | ------------------------------------------------ |
| **RETURNS** | `True` ~~bool~~ |
## displaCy {#displacy source="spacy/displacy"} ## displaCy {#displacy source="spacy/displacy"}
As of v2.0, spaCy comes with a built-in visualization suite. For more info and As of v2.0, spaCy comes with a built-in visualization suite. For more info and

View File

@ -158,29 +158,37 @@ The other way to install spaCy is to clone its
source. That is the common way if you want to make changes to the code base. source. That is the common way if you want to make changes to the code base.
You'll need to make sure that you have a development environment consisting of a You'll need to make sure that you have a development environment consisting of a
Python distribution including header files, a compiler, Python distribution including header files, a compiler,
[pip](https://pip.pypa.io/en/latest/installing/), [pip](https://pip.pypa.io/en/stable/) and [git](https://git-scm.com) installed.
[virtualenv](https://virtualenv.pypa.io/) and [git](https://git-scm.com) The compiler part is the trickiest. How to do that depends on your system. See
installed. The compiler part is the trickiest. How to do that depends on your notes on [Ubuntu](#source-ubuntu), [macOS / OS X](#source-osx) and
system. See notes on [Ubuntu](#source-ubuntu), [macOS / OS X](#source-osx) and
[Windows](#source-windows) for details. [Windows](#source-windows) for details.
```bash ```bash
$ python -m pip install -U pip # update pip $ python -m pip install -U pip setuptools wheel # install/update build tools
$ git clone https://github.com/explosion/spaCy # clone spaCy $ git clone https://github.com/explosion/spaCy # clone spaCy
$ cd spaCy # navigate into dir $ cd spaCy # navigate into dir
$ python -m venv .env # create environment in .env $ python -m venv .env # create environment in .env
$ source .env/bin/activate # activate virtual env $ source .env/bin/activate # activate virtual env
$ export PYTHONPATH=`pwd` # set Python path to spaCy dir $ pip install . # compile and install spaCy
$ pip install -r requirements.txt # install all requirements
$ python setup.py build_ext --inplace # compile spaCy
$ python setup.py install # install spaCy
``` ```
Compared to regular install via pip, the To install with extras:
[`requirements.txt`](%%GITHUB_SPACY/requirements.txt) additionally installs
developer dependencies such as Cython. See the [quickstart widget](#quickstart) ```bash
to get the right commands for your platform and Python version. $ pip install .[lookups,cuda102] # install spaCy with extras
```
To install all dependencies required for development:
```bash
$ pip install -r requirements.txt
```
Compared to a regular install via pip, the
[`requirements.txt`](%%GITHUB_SPACY/requirements.txt) additionally includes
developer dependencies such as Cython and the libraries required to run the test
suite. See the [quickstart widget](#quickstart) to get the right commands for
your platform and Python version.
<a id="source-ubuntu"></a><a id="source-osx"></a><a id="source-windows"></a> <a id="source-ubuntu"></a><a id="source-osx"></a><a id="source-windows"></a>
@ -195,6 +203,32 @@ to get the right commands for your platform and Python version.
[Visual Studio Express](https://www.visualstudio.com/vs/visual-studio-express/) [Visual Studio Express](https://www.visualstudio.com/vs/visual-studio-express/)
that matches the version that was used to compile your Python interpreter. that matches the version that was used to compile your Python interpreter.
#### Additional options for developers {#source-developers}
Some additional options may be useful for spaCy developers who are editing the
source code and recompiling frequently.
- Install in editable mode. Changes to `.py` files will be reflected as soon as
the files are saved, but edits to Cython files (`.pxd`, `.pyx`) will require
the `pip install` or `python setup.py build_ext` command below to be run
again. Before installing in editable mode, be sure you have removed any
previous installs with `pip uninstall spacy`, which you may need to run
multiple times to remove all traces of earlier installs.
```bash
$ pip install -r requirements.txt
$ pip install --no-build-isolation --editable .
```
- Build in parallel using `N` CPUs to speed up compilation and then install in
editable mode:
```bash
$ pip install -r requirements.txt
$ python setup.py build_ext --inplace -j N
$ pip install --no-build-isolation --editable .
```
### Building an executable {#executable} ### Building an executable {#executable}
The spaCy repository includes a [`Makefile`](%%GITHUB_SPACY/Makefile) that The spaCy repository includes a [`Makefile`](%%GITHUB_SPACY/Makefile) that

View File

@ -502,7 +502,7 @@ with Model.define_operators({">>": chain}):
## Create new trainable components {#components} ## Create new trainable components {#components}
In addition to [swapping out](#swap-architectures) default models in built-in In addition to [swapping out](#swap-architectures) layers in existing
components, you can also implement an entirely new, components, you can also implement an entirely new,
[trainable](/usage/processing-pipelines#trainable-components) pipeline component [trainable](/usage/processing-pipelines#trainable-components) pipeline component
from scratch. This can be done by creating a new class inheriting from from scratch. This can be done by creating a new class inheriting from
@ -523,20 +523,28 @@ overview of the `TrainablePipe` methods used by
This section outlines an example use-case of implementing a **novel relation This section outlines an example use-case of implementing a **novel relation
extraction component** from scratch. We'll implement a binary relation extraction component** from scratch. We'll implement a binary relation
extraction method that determines whether or not **two entities** in a document extraction method that determines whether or not **two entities** in a document
are related, and if so, what type of relation. We'll allow multiple types of are related, and if so, what type of relation connects them. We allow multiple
relations between two such entities (multi-label setting). There are two major types of relations between two such entities (a multi-label setting). There are
steps required: two major steps required:
1. Implement a [machine learning model](#component-rel-model) specific to this 1. Implement a [machine learning model](#component-rel-model) specific to this
task. It will have to extract candidates from a [`Doc`](/api/doc) and predict task. It will have to extract candidate relation instances from a
a relation for the available candidate pairs. [`Doc`](/api/doc) and predict the corresponding scores for each relation
2. Implement a custom [pipeline component](#component-rel-pipe) powered by the label.
machine learning model that sets annotations on the [`Doc`](/api/doc) passing 2. Implement a custom [pipeline component](#component-rel-pipe) - powered by the
through the pipeline. machine learning model from step 1 - that translates the predicted scores
into annotations that are stored on the [`Doc`](/api/doc) objects as they
pass through the `nlp` pipeline.
<!-- TODO: <Project id="tutorials/ner-relations"> <Project id="tutorials/rel_component">
Run this example use-case by using our project template. It includes all the
</Project> --> code to create the ML model and the pipeline component from scratch.
It also contains two config files to train the model:
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
The project applies the relation extraction component to identify biomolecular
interactions in a sample dataset, but you can easily swap in your own dataset
for your experiments in any other domain.
</Project>
#### Step 1: Implementing the Model {#component-rel-model} #### Step 1: Implementing the Model {#component-rel-model}
@ -552,41 +560,17 @@ matrix** (~~Floats2d~~) of predictions:
> for details. > for details.
```python ```python
### Register the model architecture ### The model architecture
@registry.architectures.register("rel_model.v1") @spacy.registry.architectures.register("rel_model.v1")
def create_relation_model(...) -> Model[List[Doc], Floats2d]: def create_relation_model(...) -> Model[List[Doc], Floats2d]:
model = ... # 👈 model will go here model = ... # 👈 model will go here
return model return model
``` ```
The first layer in this model will typically be an We adapt a **modular approach** to the definition of this relation model, and
[embedding layer](/usage/embeddings-transformers) such as a define it as chaining two layers together: the first layer that generates an
[`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer). This instance tensor from a given set of documents, and the second layer that
layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it transforms the instance tensor into a final tensor holding the predictions:
transforms each **document into a list of tokens**, with each token being
represented by its embedding in the vector space.
Next, we need a method that **generates pairs of entities** that we want to
classify as being related or not. As these candidate pairs are typically formed
within one document, this function takes a [`Doc`](/api/doc) as input and
outputs a `List` of `Span` tuples. For instance, a very straightforward
implementation would be to just take any two entities from the same document:
```python
### Simple candiate generation
def get_candidates(doc: Doc) -> List[Tuple[Span, Span]]:
candidates = []
for ent1 in doc.ents:
for ent2 in doc.ents:
candidates.append((ent1, ent2))
return candidates
```
But we could also refine this further by **excluding relations** of an entity
with itself, and posing a **maximum distance** (in number of tokens) between two
entities. We register this function in the
[`@misc` registry](/api/top-level#registry) so we can refer to it from the
config, and easily swap it out for any other candidate generation function.
> #### config.cfg (excerpt) > #### config.cfg (excerpt)
> >
@ -594,18 +578,159 @@ config, and easily swap it out for any other candidate generation function.
> [model] > [model]
> @architectures = "rel_model.v1" > @architectures = "rel_model.v1"
> >
> [model.tok2vec] > [model.create_instance_tensor]
> # ... > # ...
> >
> [model.get_candidates] > [model.classification_layer]
> @misc = "rel_cand_generator.v1" > # ...
> max_length = 20
> ``` > ```
```python ```python
### Extended candidate generation {highlight="1,2,7,8"} ### The model architecture {highlight="6"}
@registry.misc.register("rel_cand_generator.v1") @spacy.registry.architectures.register("rel_model.v1")
def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]: def create_relation_model(
create_instance_tensor: Model[List[Doc], Floats2d],
classification_layer: Model[Floats2d, Floats2d],
) -> Model[List[Doc], Floats2d]:
model = chain(create_instance_tensor, classification_layer)
return model
```
The `classification_layer` could be something like a
[Linear](https://thinc.ai/docs/api-layers#linear) layer followed by a
[logistic](https://thinc.ai/docs/api-layers#logistic) activation function:
> #### config.cfg (excerpt)
>
> ```ini
> [model.classification_layer]
> @architectures = "rel_classification_layer.v1"
> nI = null
> nO = null
> ```
```python
### The classification layer
@spacy.registry.architectures.register("rel_classification_layer.v1")
def create_classification_layer(
nO: int = None, nI: int = None
) -> Model[Floats2d, Floats2d]:
return chain(Linear(nO=nO, nI=nI), Logistic())
```
The first layer that **creates the instance tensor** can be defined by
implementing a
[custom forward function](https://thinc.ai/docs/usage-models#weights-layers-forward)
with an appropriate backpropagation callback. We also define an
[initialization method](https://thinc.ai/docs/usage-models#weights-layers-init)
that ensures that the layer is properly set up for training.
We omit some of the implementation details here, and refer to the
[spaCy project](https://github.com/explosion/projects/tree/v3/tutorials/rel_component)
that has the full implementation.
> #### config.cfg (excerpt)
>
> ```ini
> [model.create_instance_tensor]
> @architectures = "rel_instance_tensor.v1"
>
> [model.create_instance_tensor.tok2vec]
> @architectures = "spacy.HashEmbedCNN.v1"
> # ...
>
> [model.create_instance_tensor.pooling]
> @layers = "reduce_mean.v1"
>
> [model.create_instance_tensor.get_instances]
> # ...
> ```
```python
### The layer that creates the instance tensor
@spacy.registry.architectures.register("rel_instance_tensor.v1")
def create_tensors(
tok2vec: Model[List[Doc], List[Floats2d]],
pooling: Model[Ragged, Floats2d],
get_instances: Callable[[Doc], List[Tuple[Span, Span]]],
) -> Model[List[Doc], Floats2d]:
return Model(
"instance_tensors",
instance_forward,
init=instance_init,
layers=[tok2vec, pooling],
refs={"tok2vec": tok2vec, "pooling": pooling},
attrs={"get_instances": get_instances},
)
# The custom forward function
def instance_forward(
model: Model[List[Doc], Floats2d],
docs: List[Doc],
is_train: bool,
) -> Tuple[Floats2d, Callable]:
tok2vec = model.get_ref("tok2vec")
tokvecs, bp_tokvecs = tok2vec(docs, is_train)
get_instances = model.attrs["get_instances"]
all_instances = [get_instances(doc) for doc in docs]
pooling = model.get_ref("pooling")
relations = ...
def backprop(d_relations: Floats2d) -> List[Doc]:
d_tokvecs = ...
return bp_tokvecs(d_tokvecs)
return relations, backprop
# The custom initialization method
def instance_init(
model: Model,
X: List[Doc] = None,
Y: Floats2d = None,
) -> Model:
tok2vec = model.get_ref("tok2vec")
tok2vec.initialize(X)
return model
```
This custom layer uses an [embedding layer](/usage/embeddings-transformers) such
as a [`Tok2Vec`](/api/tok2vec) component or a [`Transformer`](/api/transformer).
This layer is assumed to be of type ~~Model[List[Doc], List[Floats2d]]~~ as it
transforms each **document into a list of tokens**, with each token being
represented by its embedding in the vector space.
The `pooling` layer will be applied to summarize the token vectors into **entity
vectors**, as named entities (represented by ~~Span~~ objects) can consist of
one or multiple tokens. For instance, the pooling layer could resort to
calculating the average of all token vectors in an entity. Thinc provides
several
[built-in pooling operators](https://thinc.ai/docs/api-layers#reduction-ops) for
this purpose.
Finally, we need a `get_instances` method that **generates pairs of entities**
that we want to classify as being related or not. As these candidate pairs are
typically formed within one document, this function takes a [`Doc`](/api/doc) as
input and outputs a `List` of `Span` tuples. For instance, the following
implementation takes any two entities from the same document, as long as they
are within a **maximum distance** (in number of tokens) of eachother:
> #### config.cfg (excerpt)
>
> ```ini
>
> [model.create_instance_tensor.get_instances]
> @misc = "rel_instance_generator.v1"
> max_length = 100
> ```
```python
### Candidate generation
@spacy.registry.misc.register("rel_instance_generator.v1")
def create_instances(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]: def get_candidates(doc: "Doc") -> List[Tuple[Span, Span]]:
candidates = [] candidates = []
for ent1 in doc.ents: for ent1 in doc.ents:
@ -617,45 +742,39 @@ def create_candidate_indices(max_length: int) -> Callable[[Doc], List[Tuple[Span
return get_candidates return get_candidates
``` ```
Finally, we require a method that transforms the candidate entity pairs into a This function in added to the [`@misc` registry](/api/top-level#registry) so we
2D tensor using the specified [`Tok2Vec`](/api/tok2vec) or can refer to it from the config, and easily swap it out for any other candidate
[`Transformer`](/api/transformer). The resulting ~~Floats2~~ object will then be generation function.
processed by a final `output_layer` of the network. Putting all this together,
we can define our relation model in a config file as such:
```ini #### Intermezzo: define how to store the relations data {#component-rel-attribute}
### config.cfg
[model]
@architectures = "rel_model.v1"
# ...
[model.tok2vec] > #### Example output
# ... >
> ```python
> doc = nlp("Amsterdam is the capital of the Netherlands.")
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
> for value, rel_dict in doc._.rel.items():
> print(f"{value}: {rel_dict}")
>
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
> ```
[model.get_candidates] For our new relation extraction component, we will use a custom
@misc = "rel_cand_generator.v1" [extension attribute](/usage/processing-pipelines#custom-components-attributes)
max_length = 20 `doc._.rel` in which we store relation data. The attribute refers to a
dictionary, keyed by the **start offsets of each entity** involved in the
[model.create_candidate_tensor] candidate relation. The values in the dictionary refer to another dictionary
@misc = "rel_cand_tensor.v1" where relation labels are mapped to values between 0 and 1. We assume anything
above 0.5 to be a `True` relation. The ~~Example~~ instances that we'll use as
[model.output_layer] training data, will include their gold-standard relation annotations in
@architectures = "rel_output_layer.v1" `example.reference._.rel`.
# ...
```
<!-- TODO: link to project for implementation details -->
<!-- TODO: maybe embed files from project that show the architectures? -->
When creating this model, we store the custom functions as
[attributes](https://thinc.ai/docs/api-model#properties) and the sublayers as
references, so we can access them easily:
```python ```python
tok2vec_layer = model.get_ref("tok2vec") ### Registering the extension attribute
output_layer = model.get_ref("output_layer") from spacy.tokens import Doc
create_candidate_tensor = model.attrs["create_candidate_tensor"] Doc.set_extension("rel", default={})
get_candidates = model.attrs["get_candidates"]
``` ```
#### Step 2: Implementing the pipeline component {#component-rel-pipe} #### Step 2: Implementing the pipeline component {#component-rel-pipe}
@ -698,19 +817,44 @@ class RelationExtractor(TrainablePipe):
... ...
``` ```
Before the model can be used, it needs to be Typically, the **constructor** defines the vocab, the Machine Learning model,
[initialized](/usage/training#initialization). This function receives a callback and the name of this component. Additionally, this component, just like the
to access the full **training data set**, or a representative sample. This data `textcat` and the `tagger`, stores an **internal list of labels**. The ML model
set can be used to deduce all **relevant labels**. Alternatively, a list of will predict scores for each label. We add convenience methods to easily
labels can be provided to `initialize`, or you can call retrieve and add to them.
`RelationExtractor.add_label` directly. The number of labels defines the output
dimensionality of the network, and will be used to do ```python
### The constructor (continued)
def __init__(self, vocab, model, name="rel"):
"""Create a component instance."""
# ...
self.cfg = {"labels": []}
@property
def labels(self) -> Tuple[str]:
"""Returns the labels currently added to the component."""
return tuple(self.cfg["labels"])
def add_label(self, label: str):
"""Add a new label to the pipe."""
self.cfg["labels"] = list(self.labels) + [label]
```
After creation, the component needs to be
[initialized](/usage/training#initialization). This method can define the
relevant labels in two ways: explicitely by setting the `labels` argument in the
[`initialize` block](/api/data-formats#config-initialize) of the config, or
implicately by deducing them from the `get_examples` callback that generates the
full **training data set**, or a representative sample.
The final number of labels defines the output dimensionality of the network, and
will be used to do
[shape inference](https://thinc.ai/docs/usage-models#validation) throughout the [shape inference](https://thinc.ai/docs/usage-models#validation) throughout the
layers of the neural network. This is triggered by calling layers of the neural network. This is triggered by calling
[`Model.initialize`](https://thinc.ai/api/model#initialize). [`Model.initialize`](https://thinc.ai/api/model#initialize).
```python ```python
### The initialize method {highlight="12,18,22"} ### The initialize method {highlight="12,15,18,22"}
from itertools import islice from itertools import islice
def initialize( def initialize(
@ -741,7 +885,7 @@ Typically, this happens when the pipeline is set up before training in
[`spacy train`](/api/cli#training). After initialization, the pipeline component [`spacy train`](/api/cli#training). After initialization, the pipeline component
and its internal model can be trained and used to make predictions. and its internal model can be trained and used to make predictions.
During training, the function [`update`](/api/pipe#update) is invoked which During training, the method [`update`](/api/pipe#update) is invoked which
delegates to delegates to
[`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a [`Model.begin_update`](https://thinc.ai/docs/api-model#begin_update) and a
[`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a [`get_loss`](/api/pipe#get_loss) function that **calculates the loss** for a
@ -761,18 +905,18 @@ def update(
sgd: Optional[Optimizer] = None, sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None, losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]: ) -> Dict[str, float]:
... # ...
docs = [ex.predicted for ex in examples] docs = [eg.predicted for eg in examples]
predictions, backprop = self.model.begin_update(docs) predictions, backprop = self.model.begin_update(docs)
loss, gradient = self.get_loss(examples, predictions) loss, gradient = self.get_loss(examples, predictions)
backprop(gradient) backprop(gradient)
losses[self.name] += loss losses[self.name] += loss
... # ...
return losses return losses
``` ```
When the internal model is trained, the component can be used to make novel After training the model, the component can be used to make novel
**predictions**. The [`predict`](/api/pipe#predict) function needs to be **predictions**. The [`predict`](/api/pipe#predict) method needs to be
implemented for each subclass of `TrainablePipe`. In our case, we can simply implemented for each subclass of `TrainablePipe`. In our case, we can simply
delegate to the internal model's delegate to the internal model's
[predict](https://thinc.ai/docs/api-model#predict) function that takes a batch [predict](https://thinc.ai/docs/api-model#predict) function that takes a batch
@ -788,42 +932,21 @@ def predict(self, docs: Iterable[Doc]) -> Floats2d:
The final method that needs to be implemented, is The final method that needs to be implemented, is
[`set_annotations`](/api/pipe#set_annotations). This function takes the [`set_annotations`](/api/pipe#set_annotations). This function takes the
predictions, and modifies the given `Doc` object in place to store them. For our predictions, and modifies the given `Doc` object in place to store them. For our
relation extraction component, we store the data as a dictionary in a custom relation extraction component, we store the data in the
[extension attribute](/usage/processing-pipelines#custom-components-attributes) [custom attribute](#component-rel-attribute)`doc._.rel`.
`doc._.rel`. As keys, we represent the candidate pair by the **start offsets of
each entity**, as this defines an entity pair uniquely within one document.
To interpret the scores predicted by the relation extraction model correctly, we To interpret the scores predicted by the relation extraction model correctly, we
need to refer to the model's `get_candidates` function that defined which pairs need to refer to the model's `get_instances` function that defined which pairs
of entities were relevant candidates, so that the predictions can be linked to of entities were relevant candidates, so that the predictions can be linked to
those exact entities: those exact entities:
> #### Example output
>
> ```python
> doc = nlp("Amsterdam is the capital of the Netherlands.")
> print("spans", [(e.start, e.text, e.label_) for e in doc.ents])
> for value, rel_dict in doc._.rel.items():
> print(f"{value}: {rel_dict}")
>
> # spans [(0, 'Amsterdam', 'LOC'), (6, 'Netherlands', 'LOC')]
> # (0, 6): {'CAPITAL_OF': 0.89, 'LOCATED_IN': 0.75, 'UNRELATED': 0.002}
> # (6, 0): {'CAPITAL_OF': 0.01, 'LOCATED_IN': 0.13, 'UNRELATED': 0.017}
> ```
```python
### Registering the extension attribute
from spacy.tokens import Doc
Doc.set_extension("rel", default={})
```
```python ```python
### The set_annotations method {highlight="5-6,10"} ### The set_annotations method {highlight="5-6,10"}
def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d): def set_annotations(self, docs: Iterable[Doc], predictions: Floats2d):
c = 0 c = 0
get_candidates = self.model.attrs["get_candidates"] get_instances = self.model.attrs["get_instances"]
for doc in docs: for doc in docs:
for (e1, e2) in get_candidates(doc): for (e1, e2) in get_instances(doc):
offset = (e1.start, e2.start) offset = (e1.start, e2.start)
if offset not in doc._.rel: if offset not in doc._.rel:
doc._.rel[offset] = {} doc._.rel[offset] = {}
@ -837,15 +960,15 @@ Under the hood, when the pipe is applied to a document, it delegates to the
```python ```python
### The __call__ method ### The __call__ method
def __call__(self, Doc doc): def __call__(self, doc: Doc):
predictions = self.predict([doc]) predictions = self.predict([doc])
self.set_annotations([doc], predictions) self.set_annotations([doc], predictions)
return doc return doc
``` ```
There is one more optional method to implement: [`score`](/api/pipe#score) There is one more optional method to implement: [`score`](/api/pipe#score)
calculates the performance of your component on a set of examples, and calculates the performance of your component on a set of examples, and returns
returns the results as a dictionary: the results as a dictionary:
```python ```python
### The score method ### The score method
@ -861,8 +984,8 @@ def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
} }
``` ```
This is particularly useful to see the scores on the development corpus This is particularly useful for calculating relevant scores on the development
when training the component with [`spacy train`](/api/cli#training). corpus when training the component with [`spacy train`](/api/cli#training).
Once our `TrainablePipe` subclass is fully implemented, we can Once our `TrainablePipe` subclass is fully implemented, we can
[register](/usage/processing-pipelines#custom-components-factories) the [register](/usage/processing-pipelines#custom-components-factories) the
@ -879,14 +1002,8 @@ assigns it a name and lets you create the component with
> >
> [components.relation_extractor.model] > [components.relation_extractor.model]
> @architectures = "rel_model.v1" > @architectures = "rel_model.v1"
>
> [components.relation_extractor.model.tok2vec]
> # ... > # ...
> >
> [components.relation_extractor.model.get_candidates]
> @misc = "rel_cand_generator.v1"
> max_length = 20
>
> [training.score_weights] > [training.score_weights]
> rel_micro_p = 0.0 > rel_micro_p = 0.0
> rel_micro_r = 0.0 > rel_micro_r = 0.0
@ -902,8 +1019,8 @@ def make_relation_extractor(nlp, name, model):
return RelationExtractor(nlp.vocab, model, name) return RelationExtractor(nlp.vocab, model, name)
``` ```
You can extend the decorator to include information such as the type of You can extend the decorator to include information such as the type of
annotations that are required for this component to run, the type of annotations annotations that are required for this component to run, the type of annotations
it produces, and the scores that can be calculated: it produces, and the scores that can be calculated:
```python ```python
@ -924,6 +1041,12 @@ def make_relation_extractor(nlp, name, model):
return RelationExtractor(nlp.vocab, model, name) return RelationExtractor(nlp.vocab, model, name)
``` ```
<!-- TODO: <Project id="tutorials/ner-relations"> <Project id="tutorials/rel_component">
Run this example use-case by using our project template. It includes all the
</Project> --> code to create the ML model and the pipeline component from scratch.
It contains two config files to train the model:
one to run on CPU with a Tok2Vec layer, and one for the GPU using a transformer.
The project applies the relation extraction component to identify biomolecular
interactions, but you can easily swap in your own dataset for your experiments
in any other domain.
</Project>

View File

@ -264,6 +264,26 @@ defined in the config file.
$ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.batch_size 128" ./your_script.sh $ SPACY_CONFIG_OVERRIDES="--system.gpu_allocator pytorch --training.batch_size 128" ./your_script.sh
``` ```
### Reading from standard input {#config-stdin}
Setting the config path to `-` on the command line lets you read the config from
standard input and pipe it forward from a different process, like
[`init config`](/api/cli#init-config) or your own custom script. This is
especially useful for quick experiments, as it lets you generate a config on the
fly without having to save to and load from disk.
> #### 💡 Tip: Writing to stdout
>
> When you run `init config`, you can set the output path to `-` to write to
> stdout. In a custom script, you can print the string config, e.g.
> `print(nlp.config.to_str())`.
```cli
$ python -m spacy init config - --lang en --pipeline ner,textcat --optimize accuracy | python -m spacy train - --paths.train ./corpus/train.spacy --paths.dev ./corpus/dev.spacy
```
<!-- TODO: add reference to Prodigy's commands once Prodigy nightly is available -->
### Using variable interpolation {#config-interpolation} ### Using variable interpolation {#config-interpolation}
Another very useful feature of the config system is that it supports variable Another very useful feature of the config system is that it supports variable
@ -378,7 +398,8 @@ weights and [resume training](/api/language#resume_training).
If you don't want a component to be updated, you can **freeze** it by adding it If you don't want a component to be updated, you can **freeze** it by adding it
to the `frozen_components` list in the `[training]` block. Frozen components are to the `frozen_components` list in the `[training]` block. Frozen components are
**not updated** during training and are included in the final trained pipeline **not updated** during training and are included in the final trained pipeline
as-is. They are also excluded when calling [`nlp.initialize`](/api/language#initialize). as-is. They are also excluded when calling
[`nlp.initialize`](/api/language#initialize).
> #### Note on frozen components > #### Note on frozen components
> >
@ -551,8 +572,8 @@ or TensorFlow, make **custom modifications** to the `nlp` object, create custom
optimizers or schedules, or **stream in data** and preprocesses it on the fly optimizers or schedules, or **stream in data** and preprocesses it on the fly
while training. while training.
Each custom function can have any number of arguments that are passed in via Each custom function can have any number of arguments that are passed in via the
the [config](#config), just the built-in functions. If your function defines [config](#config), just the built-in functions. If your function defines
**default argument values**, spaCy is able to auto-fill your config when you run **default argument values**, spaCy is able to auto-fill your config when you run
[`init fill-config`](/api/cli#init-fill-config). If you want to make sure that a [`init fill-config`](/api/cli#init-fill-config). If you want to make sure that a
given parameter is always explicitly set in the config, avoid setting a default given parameter is always explicitly set in the config, avoid setting a default
@ -958,10 +979,10 @@ data assets, track changes and share your end-to-end processes with your team.
</Infobox> </Infobox>
The binary `.spacy` format is a serialized [`DocBin`](/api/docbin) containing The binary `.spacy` format is a serialized [`DocBin`](/api/docbin) containing
one or more [`Doc`](/api/doc) objects. It's extremely **efficient in one or more [`Doc`](/api/doc) objects. It's extremely **efficient in storage**,
storage**, especially when packing multiple documents together. You can also especially when packing multiple documents together. You can also create `Doc`
create `Doc` objects manually, so you can write your own custom logic to convert objects manually, so you can write your own custom logic to convert and store
and store existing annotations for use in spaCy. existing annotations for use in spaCy.
```python ```python
### Training data from Doc objects {highlight="6-9"} ### Training data from Doc objects {highlight="6-9"}
@ -1300,10 +1321,10 @@ mapping so they know which worker owns which parameter.
As training proceeds, every worker will be computing gradients for **all** of As training proceeds, every worker will be computing gradients for **all** of
the model parameters. When they compute gradients for parameters they don't own, the model parameters. When they compute gradients for parameters they don't own,
they'll **send them to the worker** that does own that parameter, along with a they'll **send them to the worker** that does own that parameter, along with a
version identifier so that the owner can decide whether to discard the version identifier so that the owner can decide whether to discard the gradient.
gradient. Workers use the gradients they receive and the ones they compute Workers use the gradients they receive and the ones they compute locally to
locally to update the parameters they own, and then broadcast the updated array update the parameters they own, and then broadcast the updated array and a new
and a new version ID to the other workers. version ID to the other workers.
This training procedure is **asynchronous** and **non-blocking**. Workers always This training procedure is **asynchronous** and **non-blocking**. Workers always
push their gradient increments and parameter updates, they do not have to pull push their gradient increments and parameter updates, they do not have to pull

View File

@ -969,18 +969,18 @@ The [`Language.update`](/api/language#update),
raw text and a dictionary of annotations. raw text and a dictionary of annotations.
```python ```python
### Training loop {highlight="11"} ### Training loop {highlight="5-8,12"}
TRAIN_DATA = [ TRAIN_DATA = [
("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}), ("Who is Shaka Khan?", {"entities": [(7, 17, "PERSON")]}),
("I like London.", {"entities": [(7, 13, "LOC")]}), ("I like London.", {"entities": [(7, 13, "LOC")]}),
] ]
nlp.initialize() examples = []
for text, annots in TRAIN_DATA:
examples.append(Example.from_dict(nlp.make_doc(text), annots))
nlp.initialize(lambda: examples)
for i in range(20): for i in range(20):
random.shuffle(TRAIN_DATA) random.shuffle(examples)
for batch in minibatch(TRAIN_DATA): for batch in minibatch(examples, size=8):
examples = []
for text, annots in batch:
examples.append(Example.from_dict(nlp.make_doc(text), annots))
nlp.update(examples) nlp.update(examples)
``` ```
@ -995,7 +995,7 @@ network,
setting up the label scheme. setting up the label scheme.
```diff ```diff
- nlp.initialize(examples) - nlp.begin_training()
+ nlp.initialize(lambda: examples) + nlp.initialize(lambda: examples)
``` ```

View File

@ -120,52 +120,65 @@ function parseArgs(raw) {
return result return result
} }
function convertLine(line, i) {
console.log(line, i)
const cliRegex = /^(\$ )?python -m spacy/
if (cliRegex.test(line)) {
const text = line.replace(cliRegex, '')
const args = parseArgs(text)
const cmd = Object.keys(args).map((key, i) => {
const value = args[key]
return value === null || value === true || i === 0 ? key : `${key} ${value}`
})
return (
<Fragment key={line}>
<span data-prompt={i === 0 ? '$' : null} className={classes.cliArgSubtle}>
python -m
</span>{' '}
<span>spacy</span>{' '}
{cmd.map((item, j) => {
const isCmd = j === 0
const url = isCmd ? `/api/cli#${item.replace(' ', '-')}` : null
const isAbstract = isString(item) && /^\[(.+)\]$/.test(item)
const itemClassNames = classNames(classes.cliArg, {
[classes.cliArgHighlight]: isCmd,
[classes.cliArgEmphasis]: isAbstract,
})
const text = isAbstract ? item.slice(1, -1) : item
return (
<Fragment key={j}>
{j !== 0 && ' '}
<span className={itemClassNames}>
<OptionalLink hidden hideIcon to={url}>
{text}
</OptionalLink>
</span>
</Fragment>
)
})}
</Fragment>
)
}
const htmlLine = replacePrompt(highlightCode('bash', line), '$')
return htmlToReact(htmlLine)
}
function formatCode(html, lang, prompt) { function formatCode(html, lang, prompt) {
if (lang === 'cli') { if (lang === 'cli') {
const cliRegex = /^(\$ )?python -m spacy/
const lines = html const lines = html
.trim() .trim()
.split('\n') .split('\n')
.map((line, i) => { .map(line =>
if (cliRegex.test(line)) { line
const text = line.replace(cliRegex, '') .split(' | ')
const args = parseArgs(text) .map((l, i) => convertLine(l, i))
const cmd = Object.keys(args).map((key, i) => { .map((l, j) => (
const value = args[key] <Fragment>
return value === null || value === true || i === 0 ? key : `${key} ${value}` {j !== 0 && <span> | </span>}
}) {l}
return (
<Fragment key={i}>
<span data-prompt="$" className={classes.cliArgSubtle}>
python -m
</span>{' '}
<span>spacy</span>{' '}
{cmd.map((item, j) => {
const isCmd = j === 0
const url = isCmd ? `/api/cli#${item.replace(' ', '-')}` : null
const isAbstract = isString(item) && /^\[(.+)\]$/.test(item)
const itemClassNames = classNames(classes.cliArg, {
[classes.cliArgHighlight]: isCmd,
[classes.cliArgEmphasis]: isAbstract,
})
const text = isAbstract ? item.slice(1, -1) : item
return (
<Fragment key={j}>
{j !== 0 && ' '}
<span className={itemClassNames}>
<OptionalLink hidden hideIcon to={url}>
{text}
</OptionalLink>
</span>
</Fragment>
)
})}
</Fragment> </Fragment>
) ))
} )
const htmlLine = replacePrompt(highlightCode('bash', line), '$')
return htmlToReact(htmlLine)
})
return lines.map((line, i) => ( return lines.map((line, i) => (
<Fragment key={i}> <Fragment key={i}>
{i !== 0 && <br />} {i !== 0 && <br />}

View File

@ -120,7 +120,7 @@ function formatAccuracy(data) {
? null ? null
: { : {
label, label,
value: (value * 100).toFixed(2), value: value.toFixed(2),
help: MODEL_META[label], help: MODEL_META[label],
} }
}) })