diff --git a/spacy/vectors.pyx b/spacy/vectors.pyx index bcea87e67..7cb3322c2 100644 --- a/spacy/vectors.pyx +++ b/spacy/vectors.pyx @@ -55,7 +55,7 @@ cdef class Vectors: """Create a new vector store. shape (tuple): Size of the table, as (# entries, # columns) - data (numpy.ndarray): The vector data. + data (numpy.ndarray or cupy.ndarray): The vector data. keys (iterable): A sequence of keys, aligned with the data. name (str): A name to identify the vectors table. @@ -65,7 +65,8 @@ cdef class Vectors: if data is None: if shape is None: shape = (0,0) - data = numpy.zeros(shape, dtype="f") + ops = get_current_ops() + data = ops.xp.zeros(shape, dtype="f") self.data = data self.key2row = {} if self.data is not None: @@ -300,6 +301,8 @@ cdef class Vectors: else: raise ValueError(Errors.E197.format(row=row, key=key)) if vector is not None: + xp = get_array_module(self.data) + vector = xp.asarray(vector) self.data[row] = vector if self._unset.count(row): self._unset.erase(self._unset.find(row)) @@ -321,10 +324,11 @@ cdef class Vectors: RETURNS (tuple): The most similar entries as a `(keys, best_rows, scores)` tuple. """ + xp = get_array_module(self.data) filled = sorted(list({row for row in self.key2row.values()})) if len(filled) < n: raise ValueError(Errors.E198.format(n=n, n_rows=len(filled))) - xp = get_array_module(self.data) + filled = xp.asarray(filled) norms = xp.linalg.norm(self.data[filled], axis=1, keepdims=True) norms[norms == 0] = 1 @@ -357,8 +361,10 @@ cdef class Vectors: # Account for numerical error we want to return in range -1, 1 scores = xp.clip(scores, a_min=-1, a_max=1, out=scores) row2key = {row: key for key, row in self.key2row.items()} + + numpy_rows = get_current_ops().to_numpy(best_rows) keys = xp.asarray( - [[row2key[row] for row in best_rows[i] if row in row2key] + [[row2key[row] for row in numpy_rows[i] if row in row2key] for i in range(len(queries)) ], dtype="uint64") return (keys, best_rows, scores) @@ -459,7 +465,8 @@ cdef class Vectors: if hasattr(self.data, "from_bytes"): self.data.from_bytes() else: - self.data = srsly.msgpack_loads(b) + xp = get_array_module(self.data) + self.data = xp.asarray(srsly.msgpack_loads(b)) deserializers = { "key2row": lambda b: self.key2row.update(srsly.msgpack_loads(b)), diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index 1008797b3..ee440898a 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -2,7 +2,7 @@ from libc.string cimport memcpy import srsly -from thinc.api import get_array_module +from thinc.api import get_array_module, get_current_ops import functools from .lexeme cimport EMPTY_LEXEME, OOV_RANK @@ -293,7 +293,7 @@ cdef class Vocab: among those remaining. For example, suppose the original table had vectors for the words: - ['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to, + ['sat', 'cat', 'feline', 'reclined']. If we prune the vector table to two rows, we would discard the vectors for 'feline' and 'reclined'. These words would then be remapped to the closest remaining vector -- so "feline" would have the same vector as "cat", and "reclined" @@ -314,6 +314,7 @@ cdef class Vocab: DOCS: https://spacy.io/api/vocab#prune_vectors """ + ops = get_current_ops() xp = get_array_module(self.vectors.data) # Make sure all vectors are in the vocab for orth in self.vectors: @@ -329,8 +330,9 @@ cdef class Vocab: toss = xp.ascontiguousarray(self.vectors.data[indices[nr_row:]]) self.vectors = Vectors(data=keep, keys=keys[:nr_row], name=self.vectors.name) syn_keys, syn_rows, scores = self.vectors.most_similar(toss, batch_size=batch_size) + syn_keys = ops.to_numpy(syn_keys) remap = {} - for i, key in enumerate(keys[nr_row:]): + for i, key in enumerate(ops.to_numpy(keys[nr_row:])): self.vectors.add(key, row=syn_rows[i][0]) word = self.strings[key] synonym = self.strings[syn_keys[i][0]] @@ -351,7 +353,7 @@ cdef class Vocab: Defaults to the length of `orth`. maxn (int): Maximum n-gram length used for Fasttext's ngram computation. Defaults to the length of `orth`. - RETURNS (numpy.ndarray): A word vector. Size + RETURNS (numpy.ndarray or cupy.ndarray): A word vector. Size and shape determined by the `vocab.vectors` instance. Usually, a numpy ndarray of shape (300,) and dtype float32. @@ -400,7 +402,7 @@ cdef class Vocab: by string or int ID. orth (int / unicode): The word. - vector (numpy.ndarray[ndim=1, dtype='float32']): The vector to set. + vector (numpy.ndarray or cupy.nadarry[ndim=1, dtype='float32']): The vector to set. DOCS: https://spacy.io/api/vocab#set_vector """