mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 08:44:26 +03:00
* Tmp
This commit is contained in:
parent
2326c5298f
commit
05ec31a134
6
fabfile.py
vendored
6
fabfile.py
vendored
|
@ -60,11 +60,13 @@ def prebuild(build_dir='/tmp/build_spacy'):
|
||||||
local('PYTHONPATH=`pwd` py.test --models spacy/tests/')
|
local('PYTHONPATH=`pwd` py.test --models spacy/tests/')
|
||||||
|
|
||||||
|
|
||||||
def web():
|
def web(dest=None):
|
||||||
|
if dest is None:
|
||||||
|
dest = path.join(path.dirname(__file__), 'website', 'site')
|
||||||
def jade(source_name, out_dir):
|
def jade(source_name, out_dir):
|
||||||
pwd = path.join(path.dirname(__file__), 'website')
|
pwd = path.join(path.dirname(__file__), 'website')
|
||||||
jade_loc = path.join(pwd, 'src', 'jade', source_name)
|
jade_loc = path.join(pwd, 'src', 'jade', source_name)
|
||||||
out_loc = path.join(pwd, 'site', out_dir)
|
out_loc = path.join(dest, out_dir)
|
||||||
local('jade -P %s --out %s' % (jade_loc, out_loc))
|
local('jade -P %s --out %s' % (jade_loc, out_loc))
|
||||||
|
|
||||||
with virtualenv(VENV_DIR):
|
with virtualenv(VENV_DIR):
|
||||||
|
|
3
setup.py
3
setup.py
|
@ -81,7 +81,7 @@ compile_options = {
|
||||||
link_options = {
|
link_options = {
|
||||||
'msvc' : [],
|
'msvc' : [],
|
||||||
'mingw32': [],
|
'mingw32': [],
|
||||||
'other' : []
|
'other' : ['-lcblas']
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -153,6 +153,7 @@ def setup_package():
|
||||||
|
|
||||||
include_dirs = [
|
include_dirs = [
|
||||||
get_python_inc(plat_specific=True),
|
get_python_inc(plat_specific=True),
|
||||||
|
'/opt/OpenBLAS/include',
|
||||||
os.path.join(root, 'include')]
|
os.path.join(root, 'include')]
|
||||||
|
|
||||||
ext_modules = []
|
ext_modules = []
|
||||||
|
|
|
@ -305,7 +305,7 @@ class Language(object):
|
||||||
n_threads=n_threads, batch_size=batch_size)
|
n_threads=n_threads, batch_size=batch_size)
|
||||||
if self.entity and entity:
|
if self.entity and entity:
|
||||||
stream = self.entity.pipe(stream,
|
stream = self.entity.pipe(stream,
|
||||||
n_threads=1, batch_size=batch_size)
|
n_threads=n_threads, batch_size=batch_size)
|
||||||
for doc in stream:
|
for doc in stream:
|
||||||
yield doc
|
yield doc
|
||||||
|
|
||||||
|
|
|
@ -23,6 +23,7 @@ from cymem.cymem cimport Pool, Address
|
||||||
from murmurhash.mrmr cimport hash64
|
from murmurhash.mrmr cimport hash64
|
||||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||||
|
from thinc.neural.nn cimport NeuralNet
|
||||||
from thinc.linalg cimport VecVec
|
from thinc.linalg cimport VecVec
|
||||||
from thinc.structs cimport SparseArrayC
|
from thinc.structs cimport SparseArrayC
|
||||||
from preshed.maps cimport MapStruct
|
from preshed.maps cimport MapStruct
|
||||||
|
@ -77,6 +78,41 @@ cdef class ParserModel(AveragedPerceptron):
|
||||||
fill_context(eg.atoms, state)
|
fill_context(eg.atoms, state)
|
||||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
||||||
|
|
||||||
|
cdef class ParserNeuralNet(NeuralNet):
|
||||||
|
cdef int nr_feat
|
||||||
|
def __init__(self, n_classes,
|
||||||
|
depth=2, hidden_width=50,
|
||||||
|
words_width=100, tags_width=5,
|
||||||
|
learn_rate=0.1):
|
||||||
|
self.nr_feat = 7
|
||||||
|
input_length = 5 * words_width + 2 * tags_width
|
||||||
|
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||||
|
vector_widths = [words_width, tags_width]
|
||||||
|
slots = [0] * 5 + [1] * 2
|
||||||
|
NeuralNet.__init__(
|
||||||
|
self,
|
||||||
|
widths,
|
||||||
|
embed=(vector_widths, slots),
|
||||||
|
eta=learn_rate,
|
||||||
|
rho=0.0,
|
||||||
|
update_step='sgd')
|
||||||
|
|
||||||
|
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
|
||||||
|
eg.nr_feat = self.nr_feat
|
||||||
|
for j in range(eg.nr_feat):
|
||||||
|
eg.features[j].value = 1.0
|
||||||
|
eg.features[j].i = j
|
||||||
|
eg.features[0].key = tokens[i].lex.lower
|
||||||
|
eg.features[1].key = tokens[i-1].lex.orth
|
||||||
|
eg.features[2].key = tokens[i].lex.orth
|
||||||
|
eg.features[3].key = tokens[i+1].lex.orth
|
||||||
|
eg.features[4].key = tokens[i+2].lex.orth
|
||||||
|
eg.features[5].key = tokens[i-2].tag
|
||||||
|
eg.features[6].key = tokens[i-1].tag
|
||||||
|
|
||||||
|
cdef void set_scoresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
cdef class Parser:
|
cdef class Parser:
|
||||||
def __init__(self, StringStore strings, transition_system, ParserModel model):
|
def __init__(self, StringStore strings, transition_system, ParserModel model):
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
from thinc.neural.nn cimport NeuralNet
|
||||||
from thinc.extra.eg cimport Example
|
from thinc.extra.eg cimport Example
|
||||||
from thinc.structs cimport ExampleC
|
from thinc.structs cimport ExampleC
|
||||||
|
|
||||||
|
@ -6,11 +6,13 @@ from .structs cimport TokenC
|
||||||
from .vocab cimport Vocab
|
from .vocab cimport Vocab
|
||||||
|
|
||||||
|
|
||||||
cdef class TaggerModel(AveragedPerceptron):
|
cdef class TaggerNeuralNet(NeuralNet):
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
|
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
|
||||||
|
|
||||||
|
cdef class CharacterTagger(NeuralNet):
|
||||||
|
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *
|
||||||
|
|
||||||
cdef class Tagger:
|
cdef class Tagger:
|
||||||
cdef readonly Vocab vocab
|
cdef readonly Vocab vocab
|
||||||
cdef readonly TaggerModel model
|
cdef readonly CharacterTagger model
|
||||||
cdef public dict freqs
|
cdef public dict freqs
|
||||||
|
|
164
spacy/tagger.pyx
164
spacy/tagger.pyx
|
@ -1,3 +1,4 @@
|
||||||
|
from __future__ import unicode_literals
|
||||||
import json
|
import json
|
||||||
from os import path
|
from os import path
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
|
@ -70,16 +71,128 @@ cpdef enum:
|
||||||
N_CONTEXT_FIELDS
|
N_CONTEXT_FIELDS
|
||||||
|
|
||||||
|
|
||||||
cdef class TaggerModel(AveragedPerceptron):
|
cdef class TaggerNeuralNet(NeuralNet):
|
||||||
|
def __init__(self, n_classes,
|
||||||
|
depth=1, hidden_width=100,
|
||||||
|
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
|
||||||
|
learn_rate=0.1):
|
||||||
|
input_length = 5 * words_width + 5 * shape_width + 5 * suffix_width + 2 * tags_width
|
||||||
|
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||||
|
vector_widths = [words_width, shape_width, suffix_width, tags_width]
|
||||||
|
slots = [0] * 5 + [1] * 5 + [2] * 5 + [3] * 2
|
||||||
|
NeuralNet.__init__(
|
||||||
|
self,
|
||||||
|
widths,
|
||||||
|
embed=(vector_widths, slots),
|
||||||
|
eta=learn_rate,
|
||||||
|
rho=1e-6,
|
||||||
|
update_step='sgd')
|
||||||
|
|
||||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
|
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
|
||||||
|
eg.nr_feat = self.nr_feat
|
||||||
|
for j in range(eg.nr_feat):
|
||||||
|
eg.features[j].value = 1.0
|
||||||
|
eg.features[j].i = j
|
||||||
|
eg.features[0].key = tokens[i].lex.lower
|
||||||
|
eg.features[1].key = tokens[i-1].lex.lower
|
||||||
|
eg.features[2].key = tokens[i-2].lex.lower
|
||||||
|
eg.features[3].key = tokens[i+1].lex.lower
|
||||||
|
eg.features[4].key = tokens[i+2].lex.lower
|
||||||
|
eg.features[5].key = tokens[i].lex.shape
|
||||||
|
eg.features[6].key = tokens[i-1].lex.shape
|
||||||
|
eg.features[7].key = tokens[i-2].lex.shape
|
||||||
|
eg.features[8].key = tokens[i+1].lex.shape
|
||||||
|
eg.features[9].key = tokens[i+2].lex.shape
|
||||||
|
eg.features[10].key = tokens[i].lex.suffix
|
||||||
|
eg.features[11].key = tokens[i-1].lex.suffix
|
||||||
|
eg.features[12].key = tokens[i-2].lex.suffix
|
||||||
|
eg.features[13].key = tokens[i+1].lex.suffix
|
||||||
|
eg.features[14].key = tokens[i+2].lex.suffix
|
||||||
|
|
||||||
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
|
eg.features[15].key = tokens[i-2].tag
|
||||||
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
|
eg.features[16].key = tokens[i-1].tag
|
||||||
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
|
|
||||||
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
|
def end_training(self):
|
||||||
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
|
pass
|
||||||
|
|
||||||
|
def dump(self, loc):
|
||||||
|
pass
|
||||||
|
|
||||||
|
property nr_feat:
|
||||||
|
def __get__(self):
|
||||||
|
return 17
|
||||||
|
|
||||||
|
|
||||||
|
cdef class CharacterTagger(NeuralNet):
|
||||||
|
def __init__(self, n_classes,
|
||||||
|
depth=2, hidden_width=100,
|
||||||
|
chars_width=5,
|
||||||
|
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
|
||||||
|
learn_rate=0.1):
|
||||||
|
input_length = 5 * chars_width * self.chars_per_word + 2 * tags_width
|
||||||
|
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||||
|
vector_widths = [chars_width, tags_width]
|
||||||
|
slots = [0] * 5 * self.chars_per_word + [1] * 2
|
||||||
|
NeuralNet.__init__(
|
||||||
|
self,
|
||||||
|
widths,
|
||||||
|
embed=(vector_widths, slots),
|
||||||
|
eta=learn_rate,
|
||||||
|
rho=1e-6,
|
||||||
|
update_step='sgd')
|
||||||
|
|
||||||
|
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *:
|
||||||
|
oov = '_' * self.chars_per_word
|
||||||
|
p2 = strings[i-2] if i >= 2 else oov
|
||||||
|
p1 = strings[i-1] if i >= 1 else oov
|
||||||
|
w = strings[i]
|
||||||
|
n1 = strings[i+1] if (i+1) < len(strings) else oov
|
||||||
|
n2 = strings[i+2] if (i+2) < len(strings) else oov
|
||||||
|
cdef int p = 0
|
||||||
|
cdef int c
|
||||||
|
cdef int chars_per_word = self.chars_per_word
|
||||||
|
cdef unicode string
|
||||||
|
for string in (p2, p1, w, n1, n2):
|
||||||
|
for c in range(chars_per_word):
|
||||||
|
eg.features[p].i = p
|
||||||
|
eg.features[p].key = ord(string[c])
|
||||||
|
eg.features[p].value = 1.0 if string[c] != u'_' else 0.0
|
||||||
|
p += 1
|
||||||
|
eg.features[p].key = tokens[i-1].tag
|
||||||
|
eg.features[p].value = 1.0
|
||||||
|
eg.features[p].i = p
|
||||||
|
p += 1
|
||||||
|
eg.features[p].key = tokens[i-2].tag
|
||||||
|
eg.features[p].value = 1.0
|
||||||
|
eg.features[p].i = p
|
||||||
|
eg.nr_feat = p+1
|
||||||
|
|
||||||
|
def end_training(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def dump(self, loc):
|
||||||
|
pass
|
||||||
|
|
||||||
|
property nr_feat:
|
||||||
|
def __get__(self):
|
||||||
|
return self.chars_per_word * 5 + 2
|
||||||
|
|
||||||
|
property chars_per_word:
|
||||||
|
def __get__(self):
|
||||||
|
return 15
|
||||||
|
|
||||||
|
|
||||||
|
def _pad(word, nr_char):
|
||||||
|
if len(word) == nr_char:
|
||||||
|
pass
|
||||||
|
elif len(word) > nr_char:
|
||||||
|
split = nr_char / 2
|
||||||
|
word = word[:split+1] + word[-split:]
|
||||||
|
else:
|
||||||
|
word = word.ljust(nr_char, ' ')
|
||||||
|
assert len(word) == nr_char, repr(word)
|
||||||
|
return word
|
||||||
|
|
||||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
|
||||||
|
|
||||||
|
|
||||||
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
||||||
|
@ -142,8 +255,8 @@ cdef class Tagger:
|
||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def blank(cls, vocab, templates):
|
def blank(cls, vocab, templates, learn_rate=0.005):
|
||||||
model = TaggerModel(N_CONTEXT_FIELDS, templates)
|
model = CharacterTagger(vocab.morphology.n_tags, learn_rate=learn_rate)
|
||||||
return cls(vocab, model)
|
return cls(vocab, model)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -158,12 +271,12 @@ cdef class Tagger:
|
||||||
# 'pos', 'templates.json',
|
# 'pos', 'templates.json',
|
||||||
# default=cls.default_templates())
|
# default=cls.default_templates())
|
||||||
|
|
||||||
model = TaggerModel(templates)
|
model = TaggerNeuralNet()
|
||||||
if pkg.has_file('pos', 'model'):
|
if pkg.has_file('pos', 'model'):
|
||||||
model.load(pkg.file_path('pos', 'model'))
|
model.load(pkg.file_path('pos', 'model'))
|
||||||
return cls(vocab, model)
|
return cls(vocab, model)
|
||||||
|
|
||||||
def __init__(self, Vocab vocab, TaggerModel model):
|
def __init__(self, Vocab vocab, CharacterTagger model):
|
||||||
self.vocab = vocab
|
self.vocab = vocab
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
||||||
|
@ -200,16 +313,19 @@ cdef class Tagger:
|
||||||
|
|
||||||
cdef int i, tag
|
cdef int i, tag
|
||||||
cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
|
cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
|
||||||
|
widths=self.model.widths,
|
||||||
nr_class=self.vocab.morphology.n_tags,
|
nr_class=self.vocab.morphology.n_tags,
|
||||||
nr_feat=self.model.nr_feat)
|
nr_feat=self.model.nr_feat)
|
||||||
|
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
|
eg.reset()
|
||||||
if tokens.c[i].pos == 0:
|
if tokens.c[i].pos == 0:
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
|
||||||
self.model.set_scoresC(eg.c.scores,
|
self.model.predict_example(eg)
|
||||||
eg.c.features, eg.c.nr_feat)
|
#self.model.set_scoresC(eg.c.scores,
|
||||||
|
# eg.c.features, eg.c.nr_feat)
|
||||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||||
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
|
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
|
||||||
eg.fill_scores(0, eg.c.nr_class)
|
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
|
|
||||||
|
@ -226,26 +342,28 @@ cdef class Tagger:
|
||||||
"gold tags, to maintain coarse-grained mapping.")
|
"gold tags, to maintain coarse-grained mapping.")
|
||||||
raise ValueError(msg % tag)
|
raise ValueError(msg % tag)
|
||||||
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
||||||
|
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
|
||||||
cdef int correct = 0
|
cdef int correct = 0
|
||||||
cdef Pool mem = Pool()
|
cdef Pool mem = Pool()
|
||||||
cdef Example eg = Example(
|
cdef Example eg = Example(
|
||||||
nr_atom=N_CONTEXT_FIELDS,
|
nr_atom=N_CONTEXT_FIELDS,
|
||||||
nr_class=self.vocab.morphology.n_tags,
|
nr_class=self.vocab.morphology.n_tags,
|
||||||
|
widths=self.model.widths,
|
||||||
nr_feat=self.model.nr_feat)
|
nr_feat=self.model.nr_feat)
|
||||||
for i in range(tokens.length):
|
for i in range(tokens.length):
|
||||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
eg.reset()
|
||||||
eg.set_label(golds[i])
|
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
|
||||||
self.model.set_scoresC(eg.c.scores,
|
eg.costs = [golds[i] not in (j, -1) for j in range(eg.c.nr_class)]
|
||||||
eg.c.features, eg.c.nr_feat)
|
self.model.train_example(eg)
|
||||||
|
|
||||||
self.model.updateC(&eg.c)
|
#self.model.set_scoresC(eg.c.scores,
|
||||||
|
# eg.c.features, eg.c.nr_feat)
|
||||||
|
#
|
||||||
|
#self.model.updateC(&eg.c)
|
||||||
|
|
||||||
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
||||||
|
|
||||||
correct += eg.cost == 0
|
correct += eg.cost == 0
|
||||||
self.freqs[TAG][tokens.c[i].tag] += 1
|
self.freqs[TAG][tokens.c[i].tag] += 1
|
||||||
eg.fill_scores(0, eg.c.nr_class)
|
|
||||||
eg.fill_costs(0, eg.c.nr_class)
|
|
||||||
tokens.is_tagged = True
|
tokens.is_tagged = True
|
||||||
tokens._py_tokens = [None] * tokens.length
|
tokens._py_tokens = [None] * tokens.length
|
||||||
return correct
|
return correct
|
||||||
|
|
Loading…
Reference in New Issue
Block a user