mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
* Tmp
This commit is contained in:
parent
2326c5298f
commit
05ec31a134
6
fabfile.py
vendored
6
fabfile.py
vendored
|
@ -60,11 +60,13 @@ def prebuild(build_dir='/tmp/build_spacy'):
|
|||
local('PYTHONPATH=`pwd` py.test --models spacy/tests/')
|
||||
|
||||
|
||||
def web():
|
||||
def web(dest=None):
|
||||
if dest is None:
|
||||
dest = path.join(path.dirname(__file__), 'website', 'site')
|
||||
def jade(source_name, out_dir):
|
||||
pwd = path.join(path.dirname(__file__), 'website')
|
||||
jade_loc = path.join(pwd, 'src', 'jade', source_name)
|
||||
out_loc = path.join(pwd, 'site', out_dir)
|
||||
out_loc = path.join(dest, out_dir)
|
||||
local('jade -P %s --out %s' % (jade_loc, out_loc))
|
||||
|
||||
with virtualenv(VENV_DIR):
|
||||
|
|
3
setup.py
3
setup.py
|
@ -81,7 +81,7 @@ compile_options = {
|
|||
link_options = {
|
||||
'msvc' : [],
|
||||
'mingw32': [],
|
||||
'other' : []
|
||||
'other' : ['-lcblas']
|
||||
}
|
||||
|
||||
|
||||
|
@ -153,6 +153,7 @@ def setup_package():
|
|||
|
||||
include_dirs = [
|
||||
get_python_inc(plat_specific=True),
|
||||
'/opt/OpenBLAS/include',
|
||||
os.path.join(root, 'include')]
|
||||
|
||||
ext_modules = []
|
||||
|
|
|
@ -305,7 +305,7 @@ class Language(object):
|
|||
n_threads=n_threads, batch_size=batch_size)
|
||||
if self.entity and entity:
|
||||
stream = self.entity.pipe(stream,
|
||||
n_threads=1, batch_size=batch_size)
|
||||
n_threads=n_threads, batch_size=batch_size)
|
||||
for doc in stream:
|
||||
yield doc
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@ from cymem.cymem cimport Pool, Address
|
|||
from murmurhash.mrmr cimport hash64
|
||||
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
|
||||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.neural.nn cimport NeuralNet
|
||||
from thinc.linalg cimport VecVec
|
||||
from thinc.structs cimport SparseArrayC
|
||||
from preshed.maps cimport MapStruct
|
||||
|
@ -77,6 +78,41 @@ cdef class ParserModel(AveragedPerceptron):
|
|||
fill_context(eg.atoms, state)
|
||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
||||
|
||||
cdef class ParserNeuralNet(NeuralNet):
|
||||
cdef int nr_feat
|
||||
def __init__(self, n_classes,
|
||||
depth=2, hidden_width=50,
|
||||
words_width=100, tags_width=5,
|
||||
learn_rate=0.1):
|
||||
self.nr_feat = 7
|
||||
input_length = 5 * words_width + 2 * tags_width
|
||||
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||
vector_widths = [words_width, tags_width]
|
||||
slots = [0] * 5 + [1] * 2
|
||||
NeuralNet.__init__(
|
||||
self,
|
||||
widths,
|
||||
embed=(vector_widths, slots),
|
||||
eta=learn_rate,
|
||||
rho=0.0,
|
||||
update_step='sgd')
|
||||
|
||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
|
||||
eg.nr_feat = self.nr_feat
|
||||
for j in range(eg.nr_feat):
|
||||
eg.features[j].value = 1.0
|
||||
eg.features[j].i = j
|
||||
eg.features[0].key = tokens[i].lex.lower
|
||||
eg.features[1].key = tokens[i-1].lex.orth
|
||||
eg.features[2].key = tokens[i].lex.orth
|
||||
eg.features[3].key = tokens[i+1].lex.orth
|
||||
eg.features[4].key = tokens[i+2].lex.orth
|
||||
eg.features[5].key = tokens[i-2].tag
|
||||
eg.features[6].key = tokens[i-1].tag
|
||||
|
||||
cdef void set_scoresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
|
||||
pass
|
||||
|
||||
|
||||
cdef class Parser:
|
||||
def __init__(self, StringStore strings, transition_system, ParserModel model):
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from thinc.linear.avgtron cimport AveragedPerceptron
|
||||
from thinc.neural.nn cimport NeuralNet
|
||||
from thinc.extra.eg cimport Example
|
||||
from thinc.structs cimport ExampleC
|
||||
|
||||
|
@ -6,11 +6,13 @@ from .structs cimport TokenC
|
|||
from .vocab cimport Vocab
|
||||
|
||||
|
||||
cdef class TaggerModel(AveragedPerceptron):
|
||||
cdef class TaggerNeuralNet(NeuralNet):
|
||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
|
||||
|
||||
cdef class CharacterTagger(NeuralNet):
|
||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *
|
||||
|
||||
cdef class Tagger:
|
||||
cdef readonly Vocab vocab
|
||||
cdef readonly TaggerModel model
|
||||
cdef readonly CharacterTagger model
|
||||
cdef public dict freqs
|
||||
|
|
170
spacy/tagger.pyx
170
spacy/tagger.pyx
|
@ -1,3 +1,4 @@
|
|||
from __future__ import unicode_literals
|
||||
import json
|
||||
from os import path
|
||||
from collections import defaultdict
|
||||
|
@ -70,17 +71,129 @@ cpdef enum:
|
|||
N_CONTEXT_FIELDS
|
||||
|
||||
|
||||
cdef class TaggerModel(AveragedPerceptron):
|
||||
cdef class TaggerNeuralNet(NeuralNet):
|
||||
def __init__(self, n_classes,
|
||||
depth=1, hidden_width=100,
|
||||
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
|
||||
learn_rate=0.1):
|
||||
input_length = 5 * words_width + 5 * shape_width + 5 * suffix_width + 2 * tags_width
|
||||
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||
vector_widths = [words_width, shape_width, suffix_width, tags_width]
|
||||
slots = [0] * 5 + [1] * 5 + [2] * 5 + [3] * 2
|
||||
NeuralNet.__init__(
|
||||
self,
|
||||
widths,
|
||||
embed=(vector_widths, slots),
|
||||
eta=learn_rate,
|
||||
rho=1e-6,
|
||||
update_step='sgd')
|
||||
|
||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
|
||||
eg.nr_feat = self.nr_feat
|
||||
for j in range(eg.nr_feat):
|
||||
eg.features[j].value = 1.0
|
||||
eg.features[j].i = j
|
||||
eg.features[0].key = tokens[i].lex.lower
|
||||
eg.features[1].key = tokens[i-1].lex.lower
|
||||
eg.features[2].key = tokens[i-2].lex.lower
|
||||
eg.features[3].key = tokens[i+1].lex.lower
|
||||
eg.features[4].key = tokens[i+2].lex.lower
|
||||
eg.features[5].key = tokens[i].lex.shape
|
||||
eg.features[6].key = tokens[i-1].lex.shape
|
||||
eg.features[7].key = tokens[i-2].lex.shape
|
||||
eg.features[8].key = tokens[i+1].lex.shape
|
||||
eg.features[9].key = tokens[i+2].lex.shape
|
||||
eg.features[10].key = tokens[i].lex.suffix
|
||||
eg.features[11].key = tokens[i-1].lex.suffix
|
||||
eg.features[12].key = tokens[i-2].lex.suffix
|
||||
eg.features[13].key = tokens[i+1].lex.suffix
|
||||
eg.features[14].key = tokens[i+2].lex.suffix
|
||||
|
||||
eg.features[15].key = tokens[i-2].tag
|
||||
eg.features[16].key = tokens[i-1].tag
|
||||
|
||||
def end_training(self):
|
||||
pass
|
||||
|
||||
def dump(self, loc):
|
||||
pass
|
||||
|
||||
property nr_feat:
|
||||
def __get__(self):
|
||||
return 17
|
||||
|
||||
|
||||
cdef class CharacterTagger(NeuralNet):
|
||||
def __init__(self, n_classes,
|
||||
depth=2, hidden_width=100,
|
||||
chars_width=5,
|
||||
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
|
||||
learn_rate=0.1):
|
||||
input_length = 5 * chars_width * self.chars_per_word + 2 * tags_width
|
||||
widths = [input_length] + [hidden_width] * depth + [n_classes]
|
||||
vector_widths = [chars_width, tags_width]
|
||||
slots = [0] * 5 * self.chars_per_word + [1] * 2
|
||||
NeuralNet.__init__(
|
||||
self,
|
||||
widths,
|
||||
embed=(vector_widths, slots),
|
||||
eta=learn_rate,
|
||||
rho=1e-6,
|
||||
update_step='sgd')
|
||||
|
||||
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *:
|
||||
oov = '_' * self.chars_per_word
|
||||
p2 = strings[i-2] if i >= 2 else oov
|
||||
p1 = strings[i-1] if i >= 1 else oov
|
||||
w = strings[i]
|
||||
n1 = strings[i+1] if (i+1) < len(strings) else oov
|
||||
n2 = strings[i+2] if (i+2) < len(strings) else oov
|
||||
cdef int p = 0
|
||||
cdef int c
|
||||
cdef int chars_per_word = self.chars_per_word
|
||||
cdef unicode string
|
||||
for string in (p2, p1, w, n1, n2):
|
||||
for c in range(chars_per_word):
|
||||
eg.features[p].i = p
|
||||
eg.features[p].key = ord(string[c])
|
||||
eg.features[p].value = 1.0 if string[c] != u'_' else 0.0
|
||||
p += 1
|
||||
eg.features[p].key = tokens[i-1].tag
|
||||
eg.features[p].value = 1.0
|
||||
eg.features[p].i = p
|
||||
p += 1
|
||||
eg.features[p].key = tokens[i-2].tag
|
||||
eg.features[p].value = 1.0
|
||||
eg.features[p].i = p
|
||||
eg.nr_feat = p+1
|
||||
|
||||
def end_training(self):
|
||||
pass
|
||||
|
||||
def dump(self, loc):
|
||||
pass
|
||||
|
||||
property nr_feat:
|
||||
def __get__(self):
|
||||
return self.chars_per_word * 5 + 2
|
||||
|
||||
property chars_per_word:
|
||||
def __get__(self):
|
||||
return 15
|
||||
|
||||
|
||||
def _pad(word, nr_char):
|
||||
if len(word) == nr_char:
|
||||
pass
|
||||
elif len(word) > nr_char:
|
||||
split = nr_char / 2
|
||||
word = word[:split+1] + word[-split:]
|
||||
else:
|
||||
word = word.ljust(nr_char, ' ')
|
||||
assert len(word) == nr_char, repr(word)
|
||||
return word
|
||||
|
||||
|
||||
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
|
||||
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
|
||||
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
|
||||
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
|
||||
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
|
||||
|
||||
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
|
||||
|
||||
|
||||
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
|
||||
context[0] = t.lex.lower
|
||||
|
@ -142,8 +255,8 @@ cdef class Tagger:
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def blank(cls, vocab, templates):
|
||||
model = TaggerModel(N_CONTEXT_FIELDS, templates)
|
||||
def blank(cls, vocab, templates, learn_rate=0.005):
|
||||
model = CharacterTagger(vocab.morphology.n_tags, learn_rate=learn_rate)
|
||||
return cls(vocab, model)
|
||||
|
||||
@classmethod
|
||||
|
@ -158,12 +271,12 @@ cdef class Tagger:
|
|||
# 'pos', 'templates.json',
|
||||
# default=cls.default_templates())
|
||||
|
||||
model = TaggerModel(templates)
|
||||
model = TaggerNeuralNet()
|
||||
if pkg.has_file('pos', 'model'):
|
||||
model.load(pkg.file_path('pos', 'model'))
|
||||
return cls(vocab, model)
|
||||
|
||||
def __init__(self, Vocab vocab, TaggerModel model):
|
||||
def __init__(self, Vocab vocab, CharacterTagger model):
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
||||
|
@ -200,16 +313,19 @@ cdef class Tagger:
|
|||
|
||||
cdef int i, tag
|
||||
cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
|
||||
widths=self.model.widths,
|
||||
nr_class=self.vocab.morphology.n_tags,
|
||||
nr_feat=self.model.nr_feat)
|
||||
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
|
||||
for i in range(tokens.length):
|
||||
eg.reset()
|
||||
if tokens.c[i].pos == 0:
|
||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
||||
self.model.set_scoresC(eg.c.scores,
|
||||
eg.c.features, eg.c.nr_feat)
|
||||
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
|
||||
self.model.predict_example(eg)
|
||||
#self.model.set_scoresC(eg.c.scores,
|
||||
# eg.c.features, eg.c.nr_feat)
|
||||
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
|
||||
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
|
||||
eg.fill_scores(0, eg.c.nr_class)
|
||||
tokens.is_tagged = True
|
||||
tokens._py_tokens = [None] * tokens.length
|
||||
|
||||
|
@ -226,26 +342,28 @@ cdef class Tagger:
|
|||
"gold tags, to maintain coarse-grained mapping.")
|
||||
raise ValueError(msg % tag)
|
||||
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
|
||||
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
|
||||
cdef int correct = 0
|
||||
cdef Pool mem = Pool()
|
||||
cdef Example eg = Example(
|
||||
nr_atom=N_CONTEXT_FIELDS,
|
||||
nr_class=self.vocab.morphology.n_tags,
|
||||
widths=self.model.widths,
|
||||
nr_feat=self.model.nr_feat)
|
||||
for i in range(tokens.length):
|
||||
self.model.set_featuresC(&eg.c, tokens.c, i)
|
||||
eg.set_label(golds[i])
|
||||
self.model.set_scoresC(eg.c.scores,
|
||||
eg.c.features, eg.c.nr_feat)
|
||||
|
||||
self.model.updateC(&eg.c)
|
||||
eg.reset()
|
||||
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
|
||||
eg.costs = [golds[i] not in (j, -1) for j in range(eg.c.nr_class)]
|
||||
self.model.train_example(eg)
|
||||
|
||||
#self.model.set_scoresC(eg.c.scores,
|
||||
# eg.c.features, eg.c.nr_feat)
|
||||
#
|
||||
#self.model.updateC(&eg.c)
|
||||
|
||||
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
|
||||
|
||||
correct += eg.cost == 0
|
||||
self.freqs[TAG][tokens.c[i].tag] += 1
|
||||
eg.fill_scores(0, eg.c.nr_class)
|
||||
eg.fill_costs(0, eg.c.nr_class)
|
||||
tokens.is_tagged = True
|
||||
tokens._py_tokens = [None] * tokens.length
|
||||
return correct
|
||||
|
|
Loading…
Reference in New Issue
Block a user