This commit is contained in:
Matthew Honnibal 2016-02-15 14:40:28 +01:00
parent 2326c5298f
commit 05ec31a134
6 changed files with 192 additions and 33 deletions

6
fabfile.py vendored
View File

@ -60,11 +60,13 @@ def prebuild(build_dir='/tmp/build_spacy'):
local('PYTHONPATH=`pwd` py.test --models spacy/tests/')
def web():
def web(dest=None):
if dest is None:
dest = path.join(path.dirname(__file__), 'website', 'site')
def jade(source_name, out_dir):
pwd = path.join(path.dirname(__file__), 'website')
jade_loc = path.join(pwd, 'src', 'jade', source_name)
out_loc = path.join(pwd, 'site', out_dir)
out_loc = path.join(dest, out_dir)
local('jade -P %s --out %s' % (jade_loc, out_loc))
with virtualenv(VENV_DIR):

View File

@ -81,7 +81,7 @@ compile_options = {
link_options = {
'msvc' : [],
'mingw32': [],
'other' : []
'other' : ['-lcblas']
}
@ -153,6 +153,7 @@ def setup_package():
include_dirs = [
get_python_inc(plat_specific=True),
'/opt/OpenBLAS/include',
os.path.join(root, 'include')]
ext_modules = []

View File

@ -305,7 +305,7 @@ class Language(object):
n_threads=n_threads, batch_size=batch_size)
if self.entity and entity:
stream = self.entity.pipe(stream,
n_threads=1, batch_size=batch_size)
n_threads=n_threads, batch_size=batch_size)
for doc in stream:
yield doc

View File

@ -23,6 +23,7 @@ from cymem.cymem cimport Pool, Address
from murmurhash.mrmr cimport hash64
from thinc.typedefs cimport weight_t, class_t, feat_t, atom_t, hash_t
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.neural.nn cimport NeuralNet
from thinc.linalg cimport VecVec
from thinc.structs cimport SparseArrayC
from preshed.maps cimport MapStruct
@ -77,6 +78,41 @@ cdef class ParserModel(AveragedPerceptron):
fill_context(eg.atoms, state)
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef class ParserNeuralNet(NeuralNet):
cdef int nr_feat
def __init__(self, n_classes,
depth=2, hidden_width=50,
words_width=100, tags_width=5,
learn_rate=0.1):
self.nr_feat = 7
input_length = 5 * words_width + 2 * tags_width
widths = [input_length] + [hidden_width] * depth + [n_classes]
vector_widths = [words_width, tags_width]
slots = [0] * 5 + [1] * 2
NeuralNet.__init__(
self,
widths,
embed=(vector_widths, slots),
eta=learn_rate,
rho=0.0,
update_step='sgd')
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
eg.nr_feat = self.nr_feat
for j in range(eg.nr_feat):
eg.features[j].value = 1.0
eg.features[j].i = j
eg.features[0].key = tokens[i].lex.lower
eg.features[1].key = tokens[i-1].lex.orth
eg.features[2].key = tokens[i].lex.orth
eg.features[3].key = tokens[i+1].lex.orth
eg.features[4].key = tokens[i+2].lex.orth
eg.features[5].key = tokens[i-2].tag
eg.features[6].key = tokens[i-1].tag
cdef void set_scoresC(self, ExampleC* eg, const TokenC* tokens, int i) nogil:
pass
cdef class Parser:
def __init__(self, StringStore strings, transition_system, ParserModel model):

View File

@ -1,4 +1,4 @@
from thinc.linear.avgtron cimport AveragedPerceptron
from thinc.neural.nn cimport NeuralNet
from thinc.extra.eg cimport Example
from thinc.structs cimport ExampleC
@ -6,11 +6,13 @@ from .structs cimport TokenC
from .vocab cimport Vocab
cdef class TaggerModel(AveragedPerceptron):
cdef class TaggerNeuralNet(NeuralNet):
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *
cdef class CharacterTagger(NeuralNet):
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *
cdef class Tagger:
cdef readonly Vocab vocab
cdef readonly TaggerModel model
cdef readonly CharacterTagger model
cdef public dict freqs

View File

@ -1,3 +1,4 @@
from __future__ import unicode_literals
import json
from os import path
from collections import defaultdict
@ -70,17 +71,129 @@ cpdef enum:
N_CONTEXT_FIELDS
cdef class TaggerModel(AveragedPerceptron):
cdef class TaggerNeuralNet(NeuralNet):
def __init__(self, n_classes,
depth=1, hidden_width=100,
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
learn_rate=0.1):
input_length = 5 * words_width + 5 * shape_width + 5 * suffix_width + 2 * tags_width
widths = [input_length] + [hidden_width] * depth + [n_classes]
vector_widths = [words_width, shape_width, suffix_width, tags_width]
slots = [0] * 5 + [1] * 5 + [2] * 5 + [3] * 2
NeuralNet.__init__(
self,
widths,
embed=(vector_widths, slots),
eta=learn_rate,
rho=1e-6,
update_step='sgd')
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, int i) except *:
eg.nr_feat = self.nr_feat
for j in range(eg.nr_feat):
eg.features[j].value = 1.0
eg.features[j].i = j
eg.features[0].key = tokens[i].lex.lower
eg.features[1].key = tokens[i-1].lex.lower
eg.features[2].key = tokens[i-2].lex.lower
eg.features[3].key = tokens[i+1].lex.lower
eg.features[4].key = tokens[i+2].lex.lower
eg.features[5].key = tokens[i].lex.shape
eg.features[6].key = tokens[i-1].lex.shape
eg.features[7].key = tokens[i-2].lex.shape
eg.features[8].key = tokens[i+1].lex.shape
eg.features[9].key = tokens[i+2].lex.shape
eg.features[10].key = tokens[i].lex.suffix
eg.features[11].key = tokens[i-1].lex.suffix
eg.features[12].key = tokens[i-2].lex.suffix
eg.features[13].key = tokens[i+1].lex.suffix
eg.features[14].key = tokens[i+2].lex.suffix
eg.features[15].key = tokens[i-2].tag
eg.features[16].key = tokens[i-1].tag
def end_training(self):
pass
def dump(self, loc):
pass
property nr_feat:
def __get__(self):
return 17
cdef class CharacterTagger(NeuralNet):
def __init__(self, n_classes,
depth=2, hidden_width=100,
chars_width=5,
words_width=20, shape_width=5, suffix_width=5, tags_width=5,
learn_rate=0.1):
input_length = 5 * chars_width * self.chars_per_word + 2 * tags_width
widths = [input_length] + [hidden_width] * depth + [n_classes]
vector_widths = [chars_width, tags_width]
slots = [0] * 5 * self.chars_per_word + [1] * 2
NeuralNet.__init__(
self,
widths,
embed=(vector_widths, slots),
eta=learn_rate,
rho=1e-6,
update_step='sgd')
cdef void set_featuresC(self, ExampleC* eg, const TokenC* tokens, object strings, int i) except *:
oov = '_' * self.chars_per_word
p2 = strings[i-2] if i >= 2 else oov
p1 = strings[i-1] if i >= 1 else oov
w = strings[i]
n1 = strings[i+1] if (i+1) < len(strings) else oov
n2 = strings[i+2] if (i+2) < len(strings) else oov
cdef int p = 0
cdef int c
cdef int chars_per_word = self.chars_per_word
cdef unicode string
for string in (p2, p1, w, n1, n2):
for c in range(chars_per_word):
eg.features[p].i = p
eg.features[p].key = ord(string[c])
eg.features[p].value = 1.0 if string[c] != u'_' else 0.0
p += 1
eg.features[p].key = tokens[i-1].tag
eg.features[p].value = 1.0
eg.features[p].i = p
p += 1
eg.features[p].key = tokens[i-2].tag
eg.features[p].value = 1.0
eg.features[p].i = p
eg.nr_feat = p+1
def end_training(self):
pass
def dump(self, loc):
pass
property nr_feat:
def __get__(self):
return self.chars_per_word * 5 + 2
property chars_per_word:
def __get__(self):
return 15
def _pad(word, nr_char):
if len(word) == nr_char:
pass
elif len(word) > nr_char:
split = nr_char / 2
word = word[:split+1] + word[-split:]
else:
word = word.ljust(nr_char, ' ')
assert len(word) == nr_char, repr(word)
return word
_fill_from_token(&eg.atoms[P2_orth], &tokens[i-2])
_fill_from_token(&eg.atoms[P1_orth], &tokens[i-1])
_fill_from_token(&eg.atoms[W_orth], &tokens[i])
_fill_from_token(&eg.atoms[N1_orth], &tokens[i+1])
_fill_from_token(&eg.atoms[N2_orth], &tokens[i+2])
eg.nr_feat = self.extracter.set_features(eg.features, eg.atoms)
cdef inline void _fill_from_token(atom_t* context, const TokenC* t) nogil:
context[0] = t.lex.lower
@ -142,8 +255,8 @@ cdef class Tagger:
)
@classmethod
def blank(cls, vocab, templates):
model = TaggerModel(N_CONTEXT_FIELDS, templates)
def blank(cls, vocab, templates, learn_rate=0.005):
model = CharacterTagger(vocab.morphology.n_tags, learn_rate=learn_rate)
return cls(vocab, model)
@classmethod
@ -158,12 +271,12 @@ cdef class Tagger:
# 'pos', 'templates.json',
# default=cls.default_templates())
model = TaggerModel(templates)
model = TaggerNeuralNet()
if pkg.has_file('pos', 'model'):
model.load(pkg.file_path('pos', 'model'))
return cls(vocab, model)
def __init__(self, Vocab vocab, TaggerModel model):
def __init__(self, Vocab vocab, CharacterTagger model):
self.vocab = vocab
self.model = model
@ -200,16 +313,19 @@ cdef class Tagger:
cdef int i, tag
cdef Example eg = Example(nr_atom=N_CONTEXT_FIELDS,
widths=self.model.widths,
nr_class=self.vocab.morphology.n_tags,
nr_feat=self.model.nr_feat)
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
for i in range(tokens.length):
eg.reset()
if tokens.c[i].pos == 0:
self.model.set_featuresC(&eg.c, tokens.c, i)
self.model.set_scoresC(eg.c.scores,
eg.c.features, eg.c.nr_feat)
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
self.model.predict_example(eg)
#self.model.set_scoresC(eg.c.scores,
# eg.c.features, eg.c.nr_feat)
guess = VecVec.arg_max_if_true(eg.c.scores, eg.c.is_valid, eg.c.nr_class)
self.vocab.morphology.assign_tag(&tokens.c[i], guess)
eg.fill_scores(0, eg.c.nr_class)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
@ -226,26 +342,28 @@ cdef class Tagger:
"gold tags, to maintain coarse-grained mapping.")
raise ValueError(msg % tag)
golds = [self.tag_names.index(g) if g is not None else -1 for g in gold_tag_strs]
strings = [_pad(tok.text, self.model.chars_per_word) for tok in tokens]
cdef int correct = 0
cdef Pool mem = Pool()
cdef Example eg = Example(
nr_atom=N_CONTEXT_FIELDS,
nr_class=self.vocab.morphology.n_tags,
widths=self.model.widths,
nr_feat=self.model.nr_feat)
for i in range(tokens.length):
self.model.set_featuresC(&eg.c, tokens.c, i)
eg.set_label(golds[i])
self.model.set_scoresC(eg.c.scores,
eg.c.features, eg.c.nr_feat)
self.model.updateC(&eg.c)
eg.reset()
self.model.set_featuresC(&eg.c, tokens.c, strings, i)
eg.costs = [golds[i] not in (j, -1) for j in range(eg.c.nr_class)]
self.model.train_example(eg)
#self.model.set_scoresC(eg.c.scores,
# eg.c.features, eg.c.nr_feat)
#
#self.model.updateC(&eg.c)
self.vocab.morphology.assign_tag(&tokens.c[i], eg.guess)
correct += eg.cost == 0
self.freqs[TAG][tokens.c[i].tag] += 1
eg.fill_scores(0, eg.c.nr_class)
eg.fill_costs(0, eg.c.nr_class)
tokens.is_tagged = True
tokens._py_tokens = [None] * tokens.length
return correct