mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 09:44:36 +03:00
* Add tests for huffman encoding
This commit is contained in:
parent
083b6ea7ae
commit
0628e0e2a8
147
tests/vocab/test_huffman.py
Normal file
147
tests/vocab/test_huffman.py
Normal file
|
@ -0,0 +1,147 @@
|
|||
from __future__ import unicode_literals
|
||||
from __future__ import division
|
||||
|
||||
import pytest
|
||||
|
||||
from spacy.serialize import HuffmanCodec
|
||||
import numpy
|
||||
|
||||
from heapq import heappush, heappop, heapify
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
class Vocab(object):
|
||||
def __init__(self, freqs):
|
||||
freqs['-eol-'] = 5
|
||||
total = sum(freqs.values())
|
||||
by_freq = freqs.items()
|
||||
by_freq.sort(key=lambda item: item[1], reverse=True)
|
||||
self.symbols = [sym for sym, freq in by_freq]
|
||||
self.probs = numpy.array([item[1] / total for item in by_freq], dtype=numpy.float32)
|
||||
self.table = {sym: i for i, sym in enumerate(self.symbols)}
|
||||
self.codec = HuffmanCodec(self.probs, self.table['-eol-'])
|
||||
|
||||
def pack(self, message):
|
||||
seq = [self.table[sym] for sym in message]
|
||||
return self.codec.encode(numpy.array(seq, dtype=numpy.uint32))
|
||||
|
||||
def unpack(self, packed):
|
||||
return [self.symbols[i] for i in self.codec.decode(packed)]
|
||||
|
||||
|
||||
def py_encode(symb2freq):
|
||||
"""Huffman encode the given dict mapping symbols to weights
|
||||
From Rosetta Code
|
||||
"""
|
||||
heap = [[wt, [sym, ""]] for sym, wt in symb2freq.items()]
|
||||
heapify(heap)
|
||||
while len(heap) > 1:
|
||||
lo = heappop(heap)
|
||||
hi = heappop(heap)
|
||||
for pair in lo[1:]:
|
||||
pair[1] = '0' + pair[1]
|
||||
for pair in hi[1:]:
|
||||
pair[1] = '1' + pair[1]
|
||||
heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])
|
||||
return dict(heappop(heap)[1:])
|
||||
|
||||
|
||||
def test1():
|
||||
probs = numpy.zeros(shape=(10,), dtype=numpy.float32)
|
||||
probs[0] = 0.3
|
||||
probs[1] = 0.2
|
||||
probs[2] = 0.15
|
||||
probs[3] = 0.1
|
||||
probs[4] = 0.06
|
||||
probs[5] = 0.02
|
||||
probs[6] = 0.01
|
||||
probs[7] = 0.005
|
||||
probs[8] = 0.0001
|
||||
probs[9] = 0.000001
|
||||
|
||||
codec = HuffmanCodec(probs, 9)
|
||||
|
||||
py_codes = py_encode(dict(enumerate(probs)))
|
||||
py_codes = py_codes.items()
|
||||
py_codes.sort()
|
||||
assert codec.strings == [c for i, c in py_codes]
|
||||
|
||||
|
||||
def test_round_trip():
|
||||
freqs = {'the': 10, 'quick': 3, 'brown': 4, 'fox': 1, 'jumped': 5, 'over': 8,
|
||||
'lazy': 1, 'dog': 2, '.': 9}
|
||||
vocab = Vocab(freqs)
|
||||
|
||||
message = ['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the',
|
||||
'the', 'lazy', 'dog', '.']
|
||||
strings = list(vocab.codec.strings)
|
||||
for i in range(len(vocab.symbols)):
|
||||
print vocab.symbols[i], strings[i]
|
||||
codes = {vocab.symbols[i]: strings[i] for i in range(len(vocab.symbols))}
|
||||
packed = vocab.pack(message)
|
||||
string = b''.join(b'{0:b}'.format(ord(c)).rjust(8, b'0')[::-1] for c in packed)
|
||||
print string
|
||||
for word in message:
|
||||
code = codes[word]
|
||||
assert string[:len(code)] == code
|
||||
string = string[len(code):]
|
||||
unpacked = vocab.unpack(packed)
|
||||
assert message == unpacked
|
||||
|
||||
|
||||
def test_rosetta():
|
||||
txt = u"this is an example for huffman encoding"
|
||||
symb2freq = defaultdict(int)
|
||||
for ch in txt:
|
||||
symb2freq[ch] += 1
|
||||
symb2freq['-eol-'] = 1
|
||||
by_freq = symb2freq.items()
|
||||
by_freq.sort(reverse=True, key=lambda item: item[1])
|
||||
symbols = [sym for sym, prob in by_freq]
|
||||
probs = numpy.array([prob for sym, prob in by_freq], dtype=numpy.float32)
|
||||
|
||||
codec = HuffmanCodec(probs, symbols.index('-eol-'))
|
||||
py_codec = py_encode(symb2freq)
|
||||
|
||||
my_lengths = defaultdict(int)
|
||||
py_lengths = defaultdict(int)
|
||||
for i, my in enumerate(codec.strings):
|
||||
symb = by_freq[i][0]
|
||||
my_lengths[len(my)] += by_freq[i][1]
|
||||
py_lengths[len(py_codec[symb])] += by_freq[i][1]
|
||||
my_exp_len = sum(length * weight for length, weight in my_lengths.items())
|
||||
py_exp_len = sum(length * weight for length, weight in py_lengths.items())
|
||||
assert my_exp_len == py_exp_len
|
||||
|
||||
|
||||
def test_vocab(EN):
|
||||
probs = numpy.ndarray(shape=(len(EN.vocab), 2), dtype=numpy.float32)
|
||||
for word in EN.vocab:
|
||||
probs[word.id, 0] = numpy.exp(word.prob)
|
||||
probs[word.id, 1] = word.id
|
||||
probs.sort()
|
||||
probs[:,::-1]
|
||||
codec = HuffmanCodec(probs[:, 0], 0)
|
||||
expected_length = 0
|
||||
for i, code in enumerate(codec.strings):
|
||||
expected_length += len(code) * probs[i, 0]
|
||||
assert 8 < expected_length < 15
|
||||
|
||||
|
||||
def test_freqs():
|
||||
freqs = []
|
||||
words = []
|
||||
for i, line in enumerate(open('freqs.txt')):
|
||||
pieces = line.strip().split()
|
||||
if len(pieces) != 2:
|
||||
continue
|
||||
freq, word = pieces
|
||||
freqs.append(int(freq))
|
||||
freqs.append(1)
|
||||
total = sum(freqs)
|
||||
freqs = [(float(f) / total) for f in freqs]
|
||||
codec = HuffmanCodec(numpy.array(freqs, dtype=numpy.float32), len(freqs)-1)
|
||||
expected_length = 0
|
||||
for i, code in enumerate(codec.strings):
|
||||
expected_length += len(code) * freqs[i]
|
||||
assert 8 < expected_length < 14
|
Loading…
Reference in New Issue
Block a user