mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-30 23:47:31 +03:00 
			
		
		
		
	Merge pull request #6216 from svlandeg/feature/nel-initialize
This commit is contained in:
		
						commit
						064575d79d
					
				|  | @ -843,7 +843,7 @@ class Language: | |||
|         *, | ||||
|         config: Dict[str, Any] = SimpleFrozenDict(), | ||||
|         validate: bool = True, | ||||
|     ) -> None: | ||||
|     ) -> Callable[[Doc], Doc]: | ||||
|         """Replace a component in the pipeline. | ||||
| 
 | ||||
|         name (str): Name of the component to replace. | ||||
|  | @ -852,6 +852,7 @@ class Language: | |||
|             component. Will be merged with default config, if available. | ||||
|         validate (bool): Whether to validate the component config against the | ||||
|             arguments and types expected by the factory. | ||||
|         RETURNS (Callable[[Doc], Doc]): The new pipeline component. | ||||
| 
 | ||||
|         DOCS: https://nightly.spacy.io/api/language#replace_pipe | ||||
|         """ | ||||
|  | @ -866,9 +867,11 @@ class Language: | |||
|         self.remove_pipe(name) | ||||
|         if not len(self._components) or pipe_index == len(self._components): | ||||
|             # we have no components to insert before/after, or we're replacing the last component | ||||
|             self.add_pipe(factory_name, name=name, config=config, validate=validate) | ||||
|             return self.add_pipe( | ||||
|                 factory_name, name=name, config=config, validate=validate | ||||
|             ) | ||||
|         else: | ||||
|             self.add_pipe( | ||||
|             return self.add_pipe( | ||||
|                 factory_name, | ||||
|                 name=name, | ||||
|                 before=pipe_index, | ||||
|  | @ -1300,7 +1303,11 @@ class Language: | |||
|             kwargs.setdefault("batch_size", batch_size) | ||||
|             # non-trainable components may have a pipe() implementation that refers to dummy | ||||
|             # predict and set_annotations methods | ||||
|             if not hasattr(pipe, "pipe") or not hasattr(pipe, "is_trainable") or not pipe.is_trainable(): | ||||
|             if ( | ||||
|                 not hasattr(pipe, "pipe") | ||||
|                 or not hasattr(pipe, "is_trainable") | ||||
|                 or not pipe.is_trainable() | ||||
|             ): | ||||
|                 docs = _pipe(docs, pipe, kwargs) | ||||
|             else: | ||||
|                 docs = pipe.pipe(docs, **kwargs) | ||||
|  | @ -1412,7 +1419,11 @@ class Language: | |||
|             kwargs.setdefault("batch_size", batch_size) | ||||
|             # non-trainable components may have a pipe() implementation that refers to dummy | ||||
|             # predict and set_annotations methods | ||||
|             if hasattr(proc, "pipe") and hasattr(proc, "is_trainable") and proc.is_trainable(): | ||||
|             if ( | ||||
|                 hasattr(proc, "pipe") | ||||
|                 and hasattr(proc, "is_trainable") | ||||
|                 and proc.is_trainable() | ||||
|             ): | ||||
|                 f = functools.partial(proc.pipe, **kwargs) | ||||
|             else: | ||||
|                 # Apply the function, but yield the doc | ||||
|  |  | |||
|  | @ -8,6 +8,7 @@ from thinc.api import set_dropout_rate | |||
| import warnings | ||||
| 
 | ||||
| from ..kb import KnowledgeBase, Candidate | ||||
| from ..ml import empty_kb | ||||
| from ..tokens import Doc | ||||
| from .pipe import Pipe, deserialize_config | ||||
| from ..language import Language | ||||
|  | @ -41,11 +42,11 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"] | |||
|     requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"], | ||||
|     assigns=["token.ent_kb_id"], | ||||
|     default_config={ | ||||
|         "kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 64}, | ||||
|         "model": DEFAULT_NEL_MODEL, | ||||
|         "labels_discard": [], | ||||
|         "incl_prior": True, | ||||
|         "incl_context": True, | ||||
|         "entity_vector_length": 64, | ||||
|         "get_candidates": {"@misc": "spacy.CandidateGenerator.v1"}, | ||||
|     }, | ||||
|     default_score_weights={ | ||||
|  | @ -58,11 +59,11 @@ def make_entity_linker( | |||
|     nlp: Language, | ||||
|     name: str, | ||||
|     model: Model, | ||||
|     kb_loader: Callable[[Vocab], KnowledgeBase], | ||||
|     *, | ||||
|     labels_discard: Iterable[str], | ||||
|     incl_prior: bool, | ||||
|     incl_context: bool, | ||||
|     entity_vector_length: int, | ||||
|     get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]], | ||||
| ): | ||||
|     """Construct an EntityLinker component. | ||||
|  | @ -70,19 +71,21 @@ def make_entity_linker( | |||
|     model (Model[List[Doc], Floats2d]): A model that learns document vector | ||||
|         representations. Given a batch of Doc objects, it should return a single | ||||
|         array, with one row per item in the batch. | ||||
|     kb (KnowledgeBase): The knowledge-base to link entities to. | ||||
|     labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction. | ||||
|     incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. | ||||
|     incl_context (bool): Whether or not to include the local context in the model. | ||||
|     entity_vector_length (int): Size of encoding vectors in the KB. | ||||
|     get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that | ||||
|         produces a list of candidates, given a certain knowledge base and a textual mention. | ||||
|     """ | ||||
|     return EntityLinker( | ||||
|         nlp.vocab, | ||||
|         model, | ||||
|         name, | ||||
|         kb_loader=kb_loader, | ||||
|         labels_discard=labels_discard, | ||||
|         incl_prior=incl_prior, | ||||
|         incl_context=incl_context, | ||||
|         entity_vector_length=entity_vector_length, | ||||
|         get_candidates=get_candidates, | ||||
|     ) | ||||
| 
 | ||||
|  | @ -101,10 +104,10 @@ class EntityLinker(Pipe): | |||
|         model: Model, | ||||
|         name: str = "entity_linker", | ||||
|         *, | ||||
|         kb_loader: Callable[[Vocab], KnowledgeBase], | ||||
|         labels_discard: Iterable[str], | ||||
|         incl_prior: bool, | ||||
|         incl_context: bool, | ||||
|         entity_vector_length: int, | ||||
|         get_candidates: Callable[[KnowledgeBase, "Span"], Iterable[Candidate]], | ||||
|     ) -> None: | ||||
|         """Initialize an entity linker. | ||||
|  | @ -113,10 +116,12 @@ class EntityLinker(Pipe): | |||
|         model (thinc.api.Model): The Thinc Model powering the pipeline component. | ||||
|         name (str): The component instance name, used to add entries to the | ||||
|             losses during training. | ||||
|         kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance. | ||||
|         labels_discard (Iterable[str]): NER labels that will automatically get a "NIL" prediction. | ||||
|         incl_prior (bool): Whether or not to include prior probabilities from the KB in the model. | ||||
|         incl_context (bool): Whether or not to include the local context in the model. | ||||
|         entity_vector_length (int): Size of encoding vectors in the KB. | ||||
|         get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that | ||||
|             produces a list of candidates, given a certain knowledge base and a textual mention. | ||||
| 
 | ||||
|         DOCS: https://nightly.spacy.io/api/entitylinker#init | ||||
|         """ | ||||
|  | @ -127,15 +132,23 @@ class EntityLinker(Pipe): | |||
|             "labels_discard": list(labels_discard), | ||||
|             "incl_prior": incl_prior, | ||||
|             "incl_context": incl_context, | ||||
|             "entity_vector_length": entity_vector_length, | ||||
|         } | ||||
|         self.kb = kb_loader(self.vocab) | ||||
|         self.get_candidates = get_candidates | ||||
|         self.cfg = dict(cfg) | ||||
|         self.distance = CosineDistance(normalize=False) | ||||
|         # how many neightbour sentences to take into account | ||||
|         self.n_sents = cfg.get("n_sents", 0) | ||||
|         # create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'. | ||||
|         self.kb = empty_kb(entity_vector_length)(self.vocab) | ||||
| 
 | ||||
|     def _require_kb(self) -> None: | ||||
|     def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]): | ||||
|         """Define the KB of this pipe by providing a function that will | ||||
|         create it using this object's vocab.""" | ||||
|         self.kb = kb_loader(self.vocab) | ||||
|         self.cfg["entity_vector_length"] = self.kb.entity_vector_length | ||||
| 
 | ||||
|     def validate_kb(self) -> None: | ||||
|         # Raise an error if the knowledge base is not initialized. | ||||
|         if len(self.kb) == 0: | ||||
|             raise ValueError(Errors.E139.format(name=self.name)) | ||||
|  | @ -145,6 +158,7 @@ class EntityLinker(Pipe): | |||
|         get_examples: Callable[[], Iterable[Example]], | ||||
|         *, | ||||
|         nlp: Optional[Language] = None, | ||||
|         kb_loader: Callable[[Vocab], KnowledgeBase] = None, | ||||
|     ): | ||||
|         """Initialize the pipe for training, using a representative set | ||||
|         of data examples. | ||||
|  | @ -152,11 +166,16 @@ class EntityLinker(Pipe): | |||
|         get_examples (Callable[[], Iterable[Example]]): Function that | ||||
|             returns a representative sample of gold-standard Example objects. | ||||
|         nlp (Language): The current nlp object the component is part of. | ||||
|         kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance. | ||||
|             Note that providing this argument, will overwrite all data accumulated in the current KB. | ||||
|             Use this only when loading a KB as-such from file. | ||||
| 
 | ||||
|         DOCS: https://nightly.spacy.io/api/entitylinker#initialize | ||||
|         """ | ||||
|         self._ensure_examples(get_examples) | ||||
|         self._require_kb() | ||||
|         if kb_loader is not None: | ||||
|             self.set_kb(kb_loader) | ||||
|         self.validate_kb() | ||||
|         nO = self.kb.entity_vector_length | ||||
|         doc_sample = [] | ||||
|         vector_sample = [] | ||||
|  | @ -192,7 +211,7 @@ class EntityLinker(Pipe): | |||
| 
 | ||||
|         DOCS: https://nightly.spacy.io/api/entitylinker#update | ||||
|         """ | ||||
|         self._require_kb() | ||||
|         self.validate_kb() | ||||
|         if losses is None: | ||||
|             losses = {} | ||||
|         losses.setdefault(self.name, 0.0) | ||||
|  | @ -303,7 +322,7 @@ class EntityLinker(Pipe): | |||
| 
 | ||||
|         DOCS: https://nightly.spacy.io/api/entitylinker#predict | ||||
|         """ | ||||
|         self._require_kb() | ||||
|         self.validate_kb() | ||||
|         entity_count = 0 | ||||
|         final_kb_ids = [] | ||||
|         if not docs: | ||||
|  |  | |||
|  | @ -110,7 +110,7 @@ def test_kb_invalid_entity_vector(nlp): | |||
| 
 | ||||
| 
 | ||||
| def test_kb_default(nlp): | ||||
|     """Test that the default (empty) KB is loaded when not providing a config""" | ||||
|     """Test that the default (empty) KB is loaded upon construction""" | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config={}) | ||||
|     assert len(entity_linker.kb) == 0 | ||||
|     assert entity_linker.kb.get_size_entities() == 0 | ||||
|  | @ -122,7 +122,7 @@ def test_kb_default(nlp): | |||
| def test_kb_custom_length(nlp): | ||||
|     """Test that the default (empty) KB can be configured with a custom entity length""" | ||||
|     entity_linker = nlp.add_pipe( | ||||
|         "entity_linker", config={"kb_loader": {"entity_vector_length": 35}} | ||||
|         "entity_linker", config={"entity_vector_length": 35} | ||||
|     ) | ||||
|     assert len(entity_linker.kb) == 0 | ||||
|     assert entity_linker.kb.get_size_entities() == 0 | ||||
|  | @ -130,18 +130,9 @@ def test_kb_custom_length(nlp): | |||
|     assert entity_linker.kb.entity_vector_length == 35 | ||||
| 
 | ||||
| 
 | ||||
| def test_kb_undefined(nlp): | ||||
|     """Test that the EL can't train without defining a KB""" | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config={}) | ||||
|     with pytest.raises(ValueError): | ||||
|         entity_linker.initialize(lambda: []) | ||||
| 
 | ||||
| 
 | ||||
| def test_kb_empty(nlp): | ||||
|     """Test that the EL can't train with an empty KB""" | ||||
|     config = {"kb_loader": {"@misc": "spacy.EmptyKB.v1", "entity_vector_length": 342}} | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config=config) | ||||
|     assert len(entity_linker.kb) == 0 | ||||
| def test_kb_initialize_empty(nlp): | ||||
|     """Test that the EL can't initialize without examples""" | ||||
|     entity_linker = nlp.add_pipe("entity_linker") | ||||
|     with pytest.raises(ValueError): | ||||
|         entity_linker.initialize(lambda: []) | ||||
| 
 | ||||
|  | @ -201,24 +192,21 @@ def test_el_pipe_configuration(nlp): | |||
|     ruler = nlp.add_pipe("entity_ruler") | ||||
|     ruler.add_patterns([pattern]) | ||||
| 
 | ||||
|     @registry.misc.register("myAdamKB.v1") | ||||
|     def mykb() -> Callable[["Vocab"], KnowledgeBase]: | ||||
|         def create_kb(vocab): | ||||
|             kb = KnowledgeBase(vocab, entity_vector_length=1) | ||||
|             kb.add_entity(entity="Q2", freq=12, entity_vector=[2]) | ||||
|             kb.add_entity(entity="Q3", freq=5, entity_vector=[3]) | ||||
|             kb.add_alias( | ||||
|                 alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1] | ||||
|             ) | ||||
|             return kb | ||||
| 
 | ||||
|         return create_kb | ||||
|     def create_kb(vocab): | ||||
|         kb = KnowledgeBase(vocab, entity_vector_length=1) | ||||
|         kb.add_entity(entity="Q2", freq=12, entity_vector=[2]) | ||||
|         kb.add_entity(entity="Q3", freq=5, entity_vector=[3]) | ||||
|         kb.add_alias( | ||||
|             alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1] | ||||
|         ) | ||||
|         return kb | ||||
| 
 | ||||
|     # run an EL pipe without a trained context encoder, to check the candidate generation step only | ||||
|     nlp.add_pipe( | ||||
|     entity_linker = nlp.add_pipe( | ||||
|         "entity_linker", | ||||
|         config={"kb_loader": {"@misc": "myAdamKB.v1"}, "incl_context": False}, | ||||
|         config={"incl_context": False}, | ||||
|     ) | ||||
|     entity_linker.set_kb(create_kb) | ||||
|     # With the default get_candidates function, matching is case-sensitive | ||||
|     text = "Douglas and douglas are not the same." | ||||
|     doc = nlp(text) | ||||
|  | @ -234,15 +222,15 @@ def test_el_pipe_configuration(nlp): | |||
|         return get_lowercased_candidates | ||||
| 
 | ||||
|     # replace the pipe with a new one with with a different candidate generator | ||||
|     nlp.replace_pipe( | ||||
|     entity_linker = nlp.replace_pipe( | ||||
|         "entity_linker", | ||||
|         "entity_linker", | ||||
|         config={ | ||||
|             "kb_loader": {"@misc": "myAdamKB.v1"}, | ||||
|             "incl_context": False, | ||||
|             "get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"}, | ||||
|         }, | ||||
|     ) | ||||
|     entity_linker.set_kb(create_kb) | ||||
|     doc = nlp(text) | ||||
|     assert doc[0].ent_kb_id_ == "Q2" | ||||
|     assert doc[1].ent_kb_id_ == "" | ||||
|  | @ -334,19 +322,15 @@ def test_preserving_links_asdoc(nlp): | |||
|     """Test that Span.as_doc preserves the existing entity links""" | ||||
|     vector_length = 1 | ||||
| 
 | ||||
|     @registry.misc.register("myLocationsKB.v1") | ||||
|     def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: | ||||
|         def create_kb(vocab): | ||||
|             mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) | ||||
|             # adding entities | ||||
|             mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) | ||||
|             mykb.add_entity(entity="Q2", freq=8, entity_vector=[1]) | ||||
|             # adding aliases | ||||
|             mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7]) | ||||
|             mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6]) | ||||
|             return mykb | ||||
| 
 | ||||
|         return create_kb | ||||
|     def create_kb(vocab): | ||||
|         mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) | ||||
|         # adding entities | ||||
|         mykb.add_entity(entity="Q1", freq=19, entity_vector=[1]) | ||||
|         mykb.add_entity(entity="Q2", freq=8, entity_vector=[1]) | ||||
|         # adding aliases | ||||
|         mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7]) | ||||
|         mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6]) | ||||
|         return mykb | ||||
| 
 | ||||
|     # set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained) | ||||
|     nlp.add_pipe("sentencizer") | ||||
|  | @ -356,8 +340,9 @@ def test_preserving_links_asdoc(nlp): | |||
|     ] | ||||
|     ruler = nlp.add_pipe("entity_ruler") | ||||
|     ruler.add_patterns(patterns) | ||||
|     el_config = {"kb_loader": {"@misc": "myLocationsKB.v1"}, "incl_prior": False} | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config=el_config, last=True) | ||||
|     config = {"incl_prior": False} | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config=config, last=True) | ||||
|     entity_linker.set_kb(create_kb) | ||||
|     nlp.initialize() | ||||
|     assert entity_linker.model.get_dim("nO") == vector_length | ||||
| 
 | ||||
|  | @ -435,30 +420,26 @@ def test_overfitting_IO(): | |||
|         doc = nlp(text) | ||||
|         train_examples.append(Example.from_dict(doc, annotation)) | ||||
| 
 | ||||
|     @registry.misc.register("myOverfittingKB.v1") | ||||
|     def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: | ||||
|         def create_kb(vocab): | ||||
|             # create artificial KB - assign same prior weight to the two russ cochran's | ||||
|             # Q2146908 (Russ Cochran): American golfer | ||||
|             # Q7381115 (Russ Cochran): publisher | ||||
|             mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) | ||||
|             mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) | ||||
|             mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) | ||||
|             mykb.add_alias( | ||||
|                 alias="Russ Cochran", | ||||
|                 entities=["Q2146908", "Q7381115"], | ||||
|                 probabilities=[0.5, 0.5], | ||||
|             ) | ||||
|             return mykb | ||||
| 
 | ||||
|         return create_kb | ||||
|     def create_kb(vocab): | ||||
|         # create artificial KB - assign same prior weight to the two russ cochran's | ||||
|         # Q2146908 (Russ Cochran): American golfer | ||||
|         # Q7381115 (Russ Cochran): publisher | ||||
|         mykb = KnowledgeBase(vocab, entity_vector_length=vector_length) | ||||
|         mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3]) | ||||
|         mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7]) | ||||
|         mykb.add_alias( | ||||
|             alias="Russ Cochran", | ||||
|             entities=["Q2146908", "Q7381115"], | ||||
|             probabilities=[0.5, 0.5], | ||||
|         ) | ||||
|         return mykb | ||||
| 
 | ||||
|     # Create the Entity Linker component and add it to the pipeline | ||||
|     entity_linker = nlp.add_pipe( | ||||
|         "entity_linker", | ||||
|         config={"kb_loader": {"@misc": "myOverfittingKB.v1"}}, | ||||
|         last=True, | ||||
|     ) | ||||
|     entity_linker.set_kb(create_kb) | ||||
| 
 | ||||
|     # train the NEL pipe | ||||
|     optimizer = nlp.initialize(get_examples=lambda: train_examples) | ||||
|  |  | |||
|  | @ -71,17 +71,13 @@ def tagger(): | |||
| def entity_linker(): | ||||
|     nlp = Language() | ||||
| 
 | ||||
|     @registry.misc.register("TestIssue5230KB.v1") | ||||
|     def dummy_kb() -> Callable[["Vocab"], KnowledgeBase]: | ||||
|         def create_kb(vocab): | ||||
|             kb = KnowledgeBase(vocab, entity_vector_length=1) | ||||
|             kb.add_entity("test", 0.0, zeros((1, 1), dtype="f")) | ||||
|             return kb | ||||
|     def create_kb(vocab): | ||||
|         kb = KnowledgeBase(vocab, entity_vector_length=1) | ||||
|         kb.add_entity("test", 0.0, zeros((1, 1), dtype="f")) | ||||
|         return kb | ||||
| 
 | ||||
|         return create_kb | ||||
| 
 | ||||
|     config = {"kb_loader": {"@misc": "TestIssue5230KB.v1"}} | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config=config) | ||||
|     entity_linker = nlp.add_pipe("entity_linker") | ||||
|     entity_linker.set_kb(create_kb) | ||||
|     # need to add model for two reasons: | ||||
|     # 1. no model leads to error in serialization, | ||||
|     # 2. the affected line is the one for model serialization | ||||
|  |  | |||
|  | @ -1,11 +1,12 @@ | |||
| from typing import Callable | ||||
| 
 | ||||
| from spacy import util | ||||
| from spacy.lang.en import English | ||||
| from spacy.util import ensure_path, registry | ||||
| from spacy.util import ensure_path, registry, load_model_from_config | ||||
| from spacy.kb import KnowledgeBase | ||||
| from thinc.api import Config | ||||
| 
 | ||||
| from ..util import make_tempdir | ||||
| from numpy import zeros | ||||
| 
 | ||||
| 
 | ||||
| def test_serialize_kb_disk(en_vocab): | ||||
|  | @ -80,6 +81,28 @@ def _check_kb(kb): | |||
| def test_serialize_subclassed_kb(): | ||||
|     """Check that IO of a custom KB works fine as part of an EL pipe.""" | ||||
| 
 | ||||
|     config_string = """ | ||||
|     [nlp] | ||||
|     lang = "en" | ||||
|     pipeline = ["entity_linker"] | ||||
| 
 | ||||
|     [components] | ||||
| 
 | ||||
|     [components.entity_linker] | ||||
|     factory = "entity_linker" | ||||
| 
 | ||||
|     [initialize] | ||||
| 
 | ||||
|     [initialize.components] | ||||
| 
 | ||||
|     [initialize.components.entity_linker] | ||||
| 
 | ||||
|     [initialize.components.entity_linker.kb_loader] | ||||
|     @misc = "spacy.CustomKB.v1" | ||||
|     entity_vector_length = 342 | ||||
|     custom_field = 666 | ||||
|     """ | ||||
| 
 | ||||
|     class SubKnowledgeBase(KnowledgeBase): | ||||
|         def __init__(self, vocab, entity_vector_length, custom_field): | ||||
|             super().__init__(vocab, entity_vector_length) | ||||
|  | @ -90,23 +113,21 @@ def test_serialize_subclassed_kb(): | |||
|         entity_vector_length: int, custom_field: int | ||||
|     ) -> Callable[["Vocab"], KnowledgeBase]: | ||||
|         def custom_kb_factory(vocab): | ||||
|             return SubKnowledgeBase( | ||||
|             kb = SubKnowledgeBase( | ||||
|                 vocab=vocab, | ||||
|                 entity_vector_length=entity_vector_length, | ||||
|                 custom_field=custom_field, | ||||
|             ) | ||||
|             kb.add_entity("random_entity", 0.0, zeros(entity_vector_length)) | ||||
|             return kb | ||||
| 
 | ||||
|         return custom_kb_factory | ||||
| 
 | ||||
|     nlp = English() | ||||
|     config = { | ||||
|         "kb_loader": { | ||||
|             "@misc": "spacy.CustomKB.v1", | ||||
|             "entity_vector_length": 342, | ||||
|             "custom_field": 666, | ||||
|         } | ||||
|     } | ||||
|     entity_linker = nlp.add_pipe("entity_linker", config=config) | ||||
|     config = Config().from_str(config_string) | ||||
|     nlp = load_model_from_config(config, auto_fill=True) | ||||
|     nlp.initialize() | ||||
| 
 | ||||
|     entity_linker = nlp.get_pipe("entity_linker") | ||||
|     assert type(entity_linker.kb) == SubKnowledgeBase | ||||
|     assert entity_linker.kb.entity_vector_length == 342 | ||||
|     assert entity_linker.kb.custom_field == 666 | ||||
|  | @ -116,6 +137,7 @@ def test_serialize_subclassed_kb(): | |||
|         nlp.to_disk(tmp_dir) | ||||
|         nlp2 = util.load_model_from_path(tmp_dir) | ||||
|         entity_linker2 = nlp2.get_pipe("entity_linker") | ||||
|         assert type(entity_linker2.kb) == SubKnowledgeBase | ||||
|         # After IO, the KB is the standard one | ||||
|         assert type(entity_linker2.kb) == KnowledgeBase | ||||
|         assert entity_linker2.kb.entity_vector_length == 342 | ||||
|         assert entity_linker2.kb.custom_field == 666 | ||||
|         assert not hasattr(entity_linker2.kb, "custom_field") | ||||
|  |  | |||
|  | @ -524,7 +524,7 @@ Get a pipeline component for a given component name. | |||
| 
 | ||||
| ## Language.replace_pipe {#replace_pipe tag="method" new="2"} | ||||
| 
 | ||||
| Replace a component in the pipeline. | ||||
| Replace a component in the pipeline and return the new component. | ||||
| 
 | ||||
| <Infobox title="Changed in v3.0" variant="warning"> | ||||
| 
 | ||||
|  | @ -538,7 +538,7 @@ and instead expects the **name of a component factory** registered using | |||
| > #### Example | ||||
| > | ||||
| > ```python | ||||
| > nlp.replace_pipe("parser", my_custom_parser) | ||||
| > new_parser = nlp.replace_pipe("parser", "my_custom_parser") | ||||
| > ``` | ||||
| 
 | ||||
| | Name                                  | Description                                                                                                                                                        | | ||||
|  | @ -548,6 +548,7 @@ and instead expects the **name of a component factory** registered using | |||
| | _keyword-only_                        |                                                                                                                                                                    | | ||||
| | `config` <Tag variant="new">3</Tag>   | Optional config parameters to use for the new component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ | | ||||
| | `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~                                     | | ||||
| | **RETURNS**                           | The new pipeline component. ~~Callable[[Doc], Doc]~~                                                                                                               | | ||||
| 
 | ||||
| ## Language.rename_pipe {#rename_pipe tag="method" new="2"} | ||||
| 
 | ||||
|  |  | |||
|  | @ -297,7 +297,7 @@ packages. This lets one application easily customize the behavior of another, by | |||
| exposing an entry point in its `setup.py`. For a quick and fun intro to entry | ||||
| points in Python, check out | ||||
| [this excellent blog post](https://amir.rachum.com/blog/2017/07/28/python-entry-points/). | ||||
| spaCy can load custom function from several different entry points to add | ||||
| spaCy can load custom functions from several different entry points to add | ||||
| pipeline component factories, language classes and other settings. To make spaCy | ||||
| use your entry points, your package needs to expose them and it needs to be | ||||
| installed in the same environment – that's it. | ||||
|  |  | |||
|  | @ -395,7 +395,7 @@ type-check model definitions. | |||
| For data validation, spaCy v3.0 adopts | ||||
| [`pydantic`](https://github.com/samuelcolvin/pydantic). It also powers the data | ||||
| validation of Thinc's [config system](https://thinc.ai/docs/usage-config), which | ||||
| lets you to register **custom functions with typed arguments**, reference them | ||||
| lets you register **custom functions with typed arguments**, reference them | ||||
| in your config and see validation errors if the argument values don't match. | ||||
| 
 | ||||
| <Infobox title="Details & Documentation" emoji="📖" list> | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user