Updated documentation

This commit is contained in:
richardpaulhudson 2022-12-10 09:52:45 +01:00
parent 740b39d099
commit 065aa062f0
2 changed files with 9 additions and 7 deletions

View File

@ -30,6 +30,7 @@ def build_lemmatizer_model(
tok2vec (Model[List[Doc], List[Floats2d]]): The token-to-vector subnetwork. tok2vec (Model[List[Doc], List[Floats2d]]): The token-to-vector subnetwork.
nO (int or None): The number of tags to output in the main model. Inferred from the data if None. nO (int or None): The number of tags to output in the main model. Inferred from the data if None.
lowercasing: if *True*, the additional sigmoid appendage is created. lowercasing: if *True*, the additional sigmoid appendage is created.
lowercasing_relu_width: the width of the linear layer within the sigmoid appendage.
""" """
with Model.define_operators({">>": chain, "|": concatenate}): with Model.define_operators({">>": chain, "|": concatenate}):
t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None t2v_width = tok2vec.get_dim("nO") if tok2vec.has_dim("nO") else None

View File

@ -677,13 +677,14 @@ results than a direct connection. A possible intuition explaining this is that
it reduces the interference between the two learning goals, which are linked but it reduces the interference between the two learning goals, which are linked but
nonetheless distinct. nonetheless distinct.
| Name | Description | | Name | Description |
| ------------- | ------------------------------------------------------------------------------------------ | | ------------------------ | ------------------------------------------------------------------------------------------ |
| `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ | | `tok2vec` | Subnetwork to map tokens into vector representations. ~~Model[List[Doc], List[Floats2d]]~~ |
| `nO` | The number of tags to output. Inferred from the data if `None`. ~~Optional[int]~~ | | `nO` | The number of tags to output. Inferred from the data if `None`. ~~Optional[int]~~ |
| `normalize` | Normalize probabilities during inference. Defaults to `False`. ~~bool~~ | | `normalize` | Normalize probabilities during inference. Defaults to `False`. ~~bool~~ |
| `lowercasing` | If `True`, the additional sigmoid appendage is created. Defaults to `True`. ~~bool~~ | | `lowercasing` | If `True`, the additional sigmoid appendage is created. Defaults to `True`. ~~bool~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ | | `lowercasing_relu_width` | The width of the linear layer within the sigmoid appendage. |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[Floats2d]]~~ |
## Text classification architectures {#textcat source="spacy/ml/models/textcat.py"} ## Text classification architectures {#textcat source="spacy/ml/models/textcat.py"}