mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 01:06:33 +03:00
Merge branch 'master' into spacy.io
This commit is contained in:
commit
073e8d647c
|
@ -8,8 +8,6 @@ from spacy.kb import KnowledgeBase
|
|||
import csv
|
||||
import datetime
|
||||
|
||||
from spacy import Errors
|
||||
|
||||
|
||||
def create_kb(
|
||||
nlp,
|
||||
|
@ -33,7 +31,10 @@ def create_kb(
|
|||
input_dim = nlp.vocab.vectors_length
|
||||
print("Loaded pre-trained vectors of size %s" % input_dim)
|
||||
else:
|
||||
raise ValueError(Errors.E155)
|
||||
raise ValueError(
|
||||
"The `nlp` object should have access to pre-trained word vectors, "
|
||||
" cf. https://spacy.io/usage/models#languages."
|
||||
)
|
||||
|
||||
# disable this part of the pipeline when rerunning the KB generation from preprocessed files
|
||||
if read_raw_data:
|
||||
|
|
|
@ -73,7 +73,10 @@ def main(
|
|||
|
||||
# check the length of the nlp vectors
|
||||
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
|
||||
raise ValueError(Errors.E155)
|
||||
raise ValueError(
|
||||
"The `nlp` object should have access to pre-trained word vectors, "
|
||||
" cf. https://spacy.io/usage/models#languages."
|
||||
)
|
||||
|
||||
# STEP 2: create prior probabilities from WP
|
||||
print()
|
||||
|
|
|
@ -19,8 +19,6 @@ from bin.wiki_entity_linking import training_set_creator
|
|||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy import Errors
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
||||
|
@ -68,7 +66,7 @@ def main(
|
|||
|
||||
# check that there is a NER component in the pipeline
|
||||
if "ner" not in nlp.pipe_names:
|
||||
raise ValueError(Errors.E152)
|
||||
raise ValueError("The `nlp` object should have a pre-trained `ner` component.")
|
||||
|
||||
# STEP 2 : read the KB
|
||||
print()
|
||||
|
@ -82,7 +80,10 @@ def main(
|
|||
print(now(), "STEP 3: reading training dataset from", loc_training)
|
||||
else:
|
||||
if not wp_xml:
|
||||
raise ValueError(Errors.E153)
|
||||
raise ValueError(
|
||||
"Either provide a path to a preprocessed training directory, "
|
||||
"or to the original Wikipedia XML dump."
|
||||
)
|
||||
|
||||
if output_dir:
|
||||
loc_training = output_dir / "training_data"
|
||||
|
|
|
@ -17,12 +17,10 @@ import plac
|
|||
from pathlib import Path
|
||||
|
||||
from spacy.vocab import Vocab
|
||||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
|
||||
from spacy import Errors
|
||||
|
||||
|
||||
# Q2146908 (Russ Cochran): American golfer
|
||||
|
@ -45,7 +43,7 @@ def main(vocab_path=None, model=None, output_dir=None, n_iter=50):
|
|||
If an output_dir is provided, the KB will be stored there in a file 'kb'.
|
||||
When providing an nlp model, the updated vocab will also be written to a directory in the output_dir."""
|
||||
if model is None and vocab_path is None:
|
||||
raise ValueError(Errors.E154)
|
||||
raise ValueError("Either the `nlp` model or the `vocab` should be specified.")
|
||||
|
||||
if model is not None:
|
||||
nlp = spacy.load(model) # load existing spaCy model
|
||||
|
|
|
@ -22,8 +22,6 @@ from spacy.vocab import Vocab
|
|||
|
||||
import spacy
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
from spacy import Errors
|
||||
from spacy.tokens import Span
|
||||
from spacy.util import minibatch, compounding
|
||||
|
||||
|
|
|
@ -128,7 +128,7 @@ class DependencyRenderer(object):
|
|||
"""
|
||||
if start < 0 or end < 0:
|
||||
error_args = dict(start=start, end=end, label=label, dir=direction)
|
||||
raise ValueError(Errors.E156.format(**error_args))
|
||||
raise ValueError(Errors.E157.format(**error_args))
|
||||
level = self.levels.index(end - start) + 1
|
||||
x_start = self.offset_x + start * self.distance + self.arrow_spacing
|
||||
if self.direction == "rtl":
|
||||
|
|
|
@ -431,13 +431,24 @@ class Errors(object):
|
|||
"same, but found '{nlp}' and '{vocab}' respectively.")
|
||||
E151 = ("Trying to call nlp.update without required annotation types. "
|
||||
"Expected top-level keys: {exp}. Got: {unexp}.")
|
||||
E152 = ("The `nlp` object should have a pre-trained `ner` component.")
|
||||
E153 = ("Either provide a path to a preprocessed training directory, "
|
||||
"or to the original Wikipedia XML dump.")
|
||||
E154 = ("Either the `nlp` model or the `vocab` should be specified.")
|
||||
E155 = ("The `nlp` object should have access to pre-trained word vectors, "
|
||||
" cf. https://spacy.io/usage/models#languages.")
|
||||
E156 = ("Can't render negative values for dependency arc start or end. "
|
||||
E152 = ("The attribute {attr} is not supported for token patterns. "
|
||||
"Please use the option validate=True with Matcher, PhraseMatcher, "
|
||||
"or EntityRuler for more details.")
|
||||
E153 = ("The value type {vtype} is not supported for token patterns. "
|
||||
"Please use the option validate=True with Matcher, PhraseMatcher, "
|
||||
"or EntityRuler for more details.")
|
||||
E154 = ("One of the attributes or values is not supported for token "
|
||||
"patterns. Please use the option validate=True with Matcher, "
|
||||
"PhraseMatcher, or EntityRuler for more details.")
|
||||
E155 = ("The pipeline needs to include a tagger in order to use "
|
||||
"Matcher or PhraseMatcher with the attributes POS, TAG, or LEMMA. "
|
||||
"Try using nlp() instead of nlp.make_doc() or list(nlp.pipe()) "
|
||||
"instead of list(nlp.tokenizer.pipe()).")
|
||||
E156 = ("The pipeline needs to include a parser in order to use "
|
||||
"Matcher or PhraseMatcher with the attribute DEP. Try using "
|
||||
"nlp() instead of nlp.make_doc() or list(nlp.pipe()) instead of "
|
||||
"list(nlp.tokenizer.pipe()).")
|
||||
E157 = ("Can't render negative values for dependency arc start or end. "
|
||||
"Make sure that you're passing in absolute token indices, not "
|
||||
"relative token offsets.\nstart: {start}, end: {end}, label: "
|
||||
"{label}, direction: {dir}")
|
||||
|
|
|
@ -12,7 +12,7 @@ from ...util import update_exc, add_lookups
|
|||
|
||||
class SerbianDefaults(Language.Defaults):
|
||||
lex_attr_getters = dict(Language.Defaults.lex_attr_getters)
|
||||
lex_attr_getters[LANG] = lambda text: "rs"
|
||||
lex_attr_getters[LANG] = lambda text: "sr"
|
||||
lex_attr_getters[NORM] = add_lookups(
|
||||
Language.Defaults.lex_attr_getters[NORM], BASE_NORMS
|
||||
)
|
||||
|
@ -21,7 +21,7 @@ class SerbianDefaults(Language.Defaults):
|
|||
|
||||
|
||||
class Serbian(Language):
|
||||
lang = "rs"
|
||||
lang = "sr"
|
||||
Defaults = SerbianDefaults
|
||||
|
||||
|
|
@ -102,6 +102,10 @@ TOKEN_PATTERN_SCHEMA = {
|
|||
"title": "Entity label of single token",
|
||||
"$ref": "#/definitions/string_value",
|
||||
},
|
||||
"NORM": {
|
||||
"title": "Normalized form of the token text",
|
||||
"$ref": "#/definitions/string_value",
|
||||
},
|
||||
"LENGTH": {
|
||||
"title": "Token character length",
|
||||
"$ref": "#/definitions/integer_value",
|
||||
|
|
|
@ -67,3 +67,4 @@ cdef class Matcher:
|
|||
cdef public object _callbacks
|
||||
cdef public object _extensions
|
||||
cdef public object _extra_predicates
|
||||
cdef public object _seen_attrs
|
||||
|
|
|
@ -15,7 +15,7 @@ from ..structs cimport TokenC
|
|||
from ..vocab cimport Vocab
|
||||
from ..tokens.doc cimport Doc, get_token_attr
|
||||
from ..tokens.token cimport Token
|
||||
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH
|
||||
from ..attrs cimport ID, attr_id_t, NULL_ATTR, ORTH, POS, TAG, DEP, LEMMA
|
||||
|
||||
from ._schemas import TOKEN_PATTERN_SCHEMA
|
||||
from ..util import get_json_validator, validate_json
|
||||
|
@ -45,7 +45,7 @@ cdef class Matcher:
|
|||
self._patterns = {}
|
||||
self._callbacks = {}
|
||||
self._extensions = {}
|
||||
self._extra_predicates = []
|
||||
self._seen_attrs = set()
|
||||
self.vocab = vocab
|
||||
self.mem = Pool()
|
||||
if validate:
|
||||
|
@ -112,9 +112,15 @@ cdef class Matcher:
|
|||
raise MatchPatternError(key, errors)
|
||||
key = self._normalize_key(key)
|
||||
for pattern in patterns:
|
||||
specs = _preprocess_pattern(pattern, self.vocab.strings,
|
||||
self._extensions, self._extra_predicates)
|
||||
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
||||
try:
|
||||
specs = _preprocess_pattern(pattern, self.vocab.strings,
|
||||
self._extensions, self._extra_predicates)
|
||||
self.patterns.push_back(init_pattern(self.mem, key, specs))
|
||||
for spec in specs:
|
||||
for attr, _ in spec[1]:
|
||||
self._seen_attrs.add(attr)
|
||||
except OverflowError, AttributeError:
|
||||
raise ValueError(Errors.E154.format())
|
||||
self._patterns.setdefault(key, [])
|
||||
self._callbacks[key] = on_match
|
||||
self._patterns[key].extend(patterns)
|
||||
|
@ -177,6 +183,11 @@ cdef class Matcher:
|
|||
describing the matches. A match tuple describes a span
|
||||
`doc[start:end]`. The `label_id` and `key` are both integers.
|
||||
"""
|
||||
if len(set([LEMMA, POS, TAG]) & self._seen_attrs) > 0 \
|
||||
and not doc.is_tagged:
|
||||
raise ValueError(Errors.E155.format())
|
||||
if DEP in self._seen_attrs and not doc.is_parsed:
|
||||
raise ValueError(Errors.E156.format())
|
||||
matches = find_matches(&self.patterns[0], self.patterns.size(), doc,
|
||||
extensions=self._extensions,
|
||||
predicates=self._extra_predicates)
|
||||
|
@ -568,6 +579,8 @@ def _preprocess_pattern(token_specs, string_store, extensions_table, extra_predi
|
|||
# Signifier for 'any token'
|
||||
tokens.append((ONE, [(NULL_ATTR, 0)], [], []))
|
||||
continue
|
||||
if not isinstance(spec, dict):
|
||||
raise ValueError(Errors.E154.format())
|
||||
ops = _get_operators(spec)
|
||||
attr_values = _get_attr_values(spec, string_store)
|
||||
extensions = _get_extensions(spec, string_store, extensions_table)
|
||||
|
@ -581,21 +594,29 @@ def _get_attr_values(spec, string_store):
|
|||
attr_values = []
|
||||
for attr, value in spec.items():
|
||||
if isinstance(attr, basestring):
|
||||
attr = attr.upper()
|
||||
if attr == '_':
|
||||
continue
|
||||
elif attr.upper() == "OP":
|
||||
elif attr == "OP":
|
||||
continue
|
||||
if attr.upper() == "TEXT":
|
||||
if attr == "TEXT":
|
||||
attr = "ORTH"
|
||||
attr = IDS.get(attr.upper())
|
||||
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
|
||||
raise ValueError(Errors.E152.format(attr=attr))
|
||||
attr = IDS.get(attr)
|
||||
if isinstance(value, basestring):
|
||||
value = string_store.add(value)
|
||||
elif isinstance(value, bool):
|
||||
value = int(value)
|
||||
elif isinstance(value, dict):
|
||||
continue
|
||||
else:
|
||||
raise ValueError(Errors.E153.format(vtype=type(value).__name__))
|
||||
if attr is not None:
|
||||
attr_values.append((attr, value))
|
||||
else:
|
||||
# should be caught above using TOKEN_PATTERN_SCHEMA
|
||||
raise ValueError(Errors.E152.format(attr=attr))
|
||||
return attr_values
|
||||
|
||||
|
||||
|
@ -755,11 +776,13 @@ def _get_operators(spec):
|
|||
return lookup[spec["OP"]]
|
||||
else:
|
||||
keys = ", ".join(lookup.keys())
|
||||
raise KeyError(Errors.E011.format(op=spec["OP"], opts=keys))
|
||||
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
|
||||
|
||||
|
||||
def _get_extensions(spec, string_store, name2index):
|
||||
attr_values = []
|
||||
if not isinstance(spec.get("_", {}), dict):
|
||||
raise ValueError(Errors.E154.format())
|
||||
for name, value in spec.get("_", {}).items():
|
||||
if isinstance(value, dict):
|
||||
# Handle predicates (e.g. "IN", in the extra_predicates, not here.
|
||||
|
|
|
@ -12,6 +12,7 @@ from ..vocab cimport Vocab
|
|||
from ..tokens.doc cimport Doc, get_token_attr
|
||||
from ..typedefs cimport attr_t, hash_t
|
||||
|
||||
from ._schemas import TOKEN_PATTERN_SCHEMA
|
||||
from ..errors import Errors, Warnings, deprecation_warning, user_warning
|
||||
from ..attrs import FLAG61 as U_ENT
|
||||
from ..attrs import FLAG60 as B2_ENT
|
||||
|
@ -62,6 +63,11 @@ cdef class PhraseMatcher:
|
|||
if isinstance(attr, long):
|
||||
self.attr = attr
|
||||
else:
|
||||
attr = attr.upper()
|
||||
if attr == "TEXT":
|
||||
attr = "ORTH"
|
||||
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
|
||||
raise ValueError(Errors.E152.format(attr=attr))
|
||||
self.attr = self.vocab.strings[attr]
|
||||
self.phrase_ids = PreshMap()
|
||||
abstract_patterns = [
|
||||
|
@ -123,6 +129,10 @@ cdef class PhraseMatcher:
|
|||
length = doc.length
|
||||
if length == 0:
|
||||
continue
|
||||
if self.attr in (POS, TAG, LEMMA) and not doc.is_tagged:
|
||||
raise ValueError(Errors.E155.format())
|
||||
if self.attr == DEP and not doc.is_parsed:
|
||||
raise ValueError(Errors.E156.format())
|
||||
if self._validate and (doc.is_tagged or doc.is_parsed) \
|
||||
and self.attr not in (DEP, POS, TAG, LEMMA):
|
||||
string_attr = self.vocab.strings[self.attr]
|
||||
|
|
|
@ -54,6 +54,8 @@ class EntityRuler(object):
|
|||
self.phrase_patterns = defaultdict(list)
|
||||
self.matcher = Matcher(nlp.vocab, validate=validate)
|
||||
if phrase_matcher_attr is not None:
|
||||
if phrase_matcher_attr.upper() == "TEXT":
|
||||
phrase_matcher_attr = "ORTH"
|
||||
self.phrase_matcher_attr = phrase_matcher_attr
|
||||
self.phrase_matcher = PhraseMatcher(
|
||||
nlp.vocab, attr=self.phrase_matcher_attr, validate=validate
|
||||
|
|
|
@ -10,8 +10,8 @@ from spacy.util import get_lang_class
|
|||
# excluded: ja, ru, th, uk, vi, zh
|
||||
LANGUAGES = ["af", "ar", "bg", "bn", "ca", "cs", "da", "de", "el", "en", "es",
|
||||
"et", "fa", "fi", "fr", "ga", "he", "hi", "hr", "hu", "id", "is",
|
||||
"it", "kn", "lt", "lv", "nb", "nl", "pl", "pt", "ro", "rs", "si",
|
||||
"sk", "sl", "sq", "sv", "ta", "te", "tl", "tr", "tt", "ur"]
|
||||
"it", "kn", "lt", "lv", "nb", "nl", "pl", "pt", "ro", "si", "sk",
|
||||
"sl", "sq", "sr", "sv", "ta", "te", "tl", "tr", "tt", "ur"]
|
||||
# fmt: on
|
||||
|
||||
|
||||
|
|
|
@ -344,3 +344,39 @@ def test_dependency_matcher_compile(dependency_matcher):
|
|||
# assert matches[0][1] == [[3, 1, 2]]
|
||||
# assert matches[1][1] == [[4, 3, 3]]
|
||||
# assert matches[2][1] == [[4, 3, 2]]
|
||||
|
||||
|
||||
def test_attr_pipeline_checks(en_vocab):
|
||||
doc1 = Doc(en_vocab, words=["Test"])
|
||||
doc1.is_parsed = True
|
||||
doc2 = Doc(en_vocab, words=["Test"])
|
||||
doc2.is_tagged = True
|
||||
doc3 = Doc(en_vocab, words=["Test"])
|
||||
# DEP requires is_parsed
|
||||
matcher = Matcher(en_vocab)
|
||||
matcher.add("TEST", None, [{"DEP": "a"}])
|
||||
matcher(doc1)
|
||||
with pytest.raises(ValueError):
|
||||
matcher(doc2)
|
||||
with pytest.raises(ValueError):
|
||||
matcher(doc3)
|
||||
# TAG, POS, LEMMA require is_tagged
|
||||
for attr in ("TAG", "POS", "LEMMA"):
|
||||
matcher = Matcher(en_vocab)
|
||||
matcher.add("TEST", None, [{attr: "a"}])
|
||||
matcher(doc2)
|
||||
with pytest.raises(ValueError):
|
||||
matcher(doc1)
|
||||
with pytest.raises(ValueError):
|
||||
matcher(doc3)
|
||||
# TEXT/ORTH only require tokens
|
||||
matcher = Matcher(en_vocab)
|
||||
matcher.add("TEST", None, [{"ORTH": "a"}])
|
||||
matcher(doc1)
|
||||
matcher(doc2)
|
||||
matcher(doc3)
|
||||
matcher = Matcher(en_vocab)
|
||||
matcher.add("TEST", None, [{"TEXT": "a"}])
|
||||
matcher(doc1)
|
||||
matcher(doc2)
|
||||
matcher(doc3)
|
||||
|
|
|
@ -7,6 +7,36 @@ from spacy.matcher._schemas import TOKEN_PATTERN_SCHEMA
|
|||
from spacy.errors import MatchPatternError
|
||||
from spacy.util import get_json_validator, validate_json
|
||||
|
||||
# (pattern, num errors with validation, num errors identified with minimal
|
||||
# checks)
|
||||
TEST_PATTERNS = [
|
||||
# Bad patterns flagged in all cases
|
||||
([{"XX": "foo"}], 1, 1),
|
||||
([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2, 1),
|
||||
([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2, 1),
|
||||
([{"IS_PUNCT": True, "OP": "$"}], 1, 1),
|
||||
([{"IS_DIGIT": -1}], 1, 1),
|
||||
([{"ORTH": -1}], 1, 1),
|
||||
([{"_": "foo"}], 1, 1),
|
||||
('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1),
|
||||
([1, 2, 3], 3, 1),
|
||||
# Bad patterns flagged outside of Matcher
|
||||
([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 1, 0),
|
||||
# Bad patterns not flagged with minimal checks
|
||||
([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 2, 0),
|
||||
([{"LENGTH": {"VALUE": 5}}], 1, 0),
|
||||
([{"TEXT": {"VALUE": "foo"}}], 1, 0),
|
||||
# Good patterns
|
||||
([{"TEXT": "foo"}, {"LOWER": "bar"}], 0, 0),
|
||||
([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0, 0),
|
||||
([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0, 0),
|
||||
([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0, 0),
|
||||
([{"NORM": "a"}, {"POS": {"IN": ["NOUN"]}}], 0, 0),
|
||||
([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0, 0),
|
||||
]
|
||||
|
||||
XFAIL_TEST_PATTERNS = [([{"orth": "foo"}], 0, 0)]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def validator():
|
||||
|
@ -22,27 +52,24 @@ def test_matcher_pattern_validation(en_vocab, pattern):
|
|||
matcher.add("TEST", None, pattern)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"pattern,n_errors",
|
||||
[
|
||||
# Bad patterns
|
||||
([{"XX": "foo"}], 1),
|
||||
([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2),
|
||||
([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 2),
|
||||
([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2),
|
||||
([{"TEXT": {"VALUE": "foo"}}], 1),
|
||||
([{"LENGTH": {"VALUE": 5}}], 1),
|
||||
([{"_": "foo"}], 1),
|
||||
([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 1),
|
||||
([{"IS_PUNCT": True, "OP": "$"}], 1),
|
||||
# Good patterns
|
||||
([{"TEXT": "foo"}, {"LOWER": "bar"}], 0),
|
||||
([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0),
|
||||
([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0),
|
||||
([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0),
|
||||
([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0),
|
||||
],
|
||||
)
|
||||
def test_pattern_validation(validator, pattern, n_errors):
|
||||
@pytest.mark.parametrize("pattern,n_errors,_", TEST_PATTERNS)
|
||||
def test_pattern_validation(validator, pattern, n_errors, _):
|
||||
errors = validate_json(pattern, validator)
|
||||
assert len(errors) == n_errors
|
||||
|
||||
|
||||
@pytest.mark.xfail
|
||||
@pytest.mark.parametrize("pattern,n_errors,_", XFAIL_TEST_PATTERNS)
|
||||
def test_xfail_pattern_validation(validator, pattern, n_errors, _):
|
||||
errors = validate_json(pattern, validator)
|
||||
assert len(errors) == n_errors
|
||||
|
||||
|
||||
@pytest.mark.parametrize("pattern,n_errors,n_min_errors", TEST_PATTERNS)
|
||||
def test_minimal_pattern_validation(en_vocab, pattern, n_errors, n_min_errors):
|
||||
matcher = Matcher(en_vocab)
|
||||
if n_min_errors > 0:
|
||||
with pytest.raises(ValueError):
|
||||
matcher.add("TEST", None, pattern)
|
||||
elif n_errors == 0:
|
||||
matcher.add("TEST", None, pattern)
|
||||
|
|
|
@ -99,3 +99,36 @@ def test_phrase_matcher_validation(en_vocab):
|
|||
with pytest.warns(None) as record:
|
||||
matcher.add("TEST4", None, doc2)
|
||||
assert not record.list
|
||||
|
||||
|
||||
def test_attr_validation(en_vocab):
|
||||
with pytest.raises(ValueError):
|
||||
PhraseMatcher(en_vocab, attr="UNSUPPORTED")
|
||||
|
||||
|
||||
def test_attr_pipeline_checks(en_vocab):
|
||||
doc1 = Doc(en_vocab, words=["Test"])
|
||||
doc1.is_parsed = True
|
||||
doc2 = Doc(en_vocab, words=["Test"])
|
||||
doc2.is_tagged = True
|
||||
doc3 = Doc(en_vocab, words=["Test"])
|
||||
# DEP requires is_parsed
|
||||
matcher = PhraseMatcher(en_vocab, attr="DEP")
|
||||
matcher.add("TEST1", None, doc1)
|
||||
with pytest.raises(ValueError):
|
||||
matcher.add("TEST2", None, doc2)
|
||||
with pytest.raises(ValueError):
|
||||
matcher.add("TEST3", None, doc3)
|
||||
# TAG, POS, LEMMA require is_tagged
|
||||
for attr in ("TAG", "POS", "LEMMA"):
|
||||
matcher = PhraseMatcher(en_vocab, attr=attr)
|
||||
matcher.add("TEST2", None, doc2)
|
||||
with pytest.raises(ValueError):
|
||||
matcher.add("TEST1", None, doc1)
|
||||
with pytest.raises(ValueError):
|
||||
matcher.add("TEST3", None, doc3)
|
||||
# TEXT/ORTH only require tokens
|
||||
matcher = PhraseMatcher(en_vocab, attr="ORTH")
|
||||
matcher.add("TEST3", None, doc3)
|
||||
matcher = PhraseMatcher(en_vocab, attr="TEXT")
|
||||
matcher.add("TEST3", None, doc3)
|
||||
|
|
|
@ -137,8 +137,9 @@ def test_entity_ruler_validate(nlp):
|
|||
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
|
||||
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
|
||||
|
||||
# invalid pattern is added without errors without validate
|
||||
ruler.add_patterns([invalid_pattern])
|
||||
# invalid pattern raises error without validate
|
||||
with pytest.raises(ValueError):
|
||||
ruler.add_patterns([invalid_pattern])
|
||||
|
||||
# valid pattern is added without errors with validate
|
||||
validated_ruler.add_patterns([valid_pattern])
|
||||
|
|
|
@ -859,12 +859,12 @@ token pattern covering the exact tokenization of the term.
|
|||
<Infobox title="Important note on creating patterns" variant="warning">
|
||||
|
||||
To create the patterns, each phrase has to be processed with the `nlp` object.
|
||||
If you have a mode loaded, doing this in a loop or list comprehension can easily
|
||||
become inefficient and slow. If you **only need the tokenization and lexical
|
||||
attributes**, you can run [`nlp.make_doc`](/api/language#make_doc) instead,
|
||||
which will only run the tokenizer. For an additional speed boost, you can also
|
||||
use the [`nlp.tokenizer.pipe`](/api/tokenizer#pipe) method, which will process
|
||||
the texts as a stream.
|
||||
If you have a model loaded, doing this in a loop or list comprehension can
|
||||
easily become inefficient and slow. If you **only need the tokenization and
|
||||
lexical attributes**, you can run [`nlp.make_doc`](/api/language#make_doc)
|
||||
instead, which will only run the tokenizer. For an additional speed boost, you
|
||||
can also use the [`nlp.tokenizer.pipe`](/api/tokenizer#pipe) method, which will
|
||||
process the texts as a stream.
|
||||
|
||||
```diff
|
||||
- patterns = [nlp(term) for term in LOTS_OF_TERMS]
|
||||
|
|
|
@ -127,7 +127,7 @@
|
|||
{ "code": "is", "name": "Icelandic" },
|
||||
{ "code": "lt", "name": "Lithuanian" },
|
||||
{ "code": "lv", "name": "Latvian" },
|
||||
{ "code": "rs", "name": "Serbian" },
|
||||
{ "code": "sr", "name": "Serbian" },
|
||||
{ "code": "sk", "name": "Slovak" },
|
||||
{ "code": "sl", "name": "Slovenian" },
|
||||
{
|
||||
|
|
|
@ -1089,6 +1089,62 @@
|
|||
"youtube": "6zm9NC9uRkk",
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "video-intro-to-nlp-episode-1",
|
||||
"title": "Intro to NLP with spaCy",
|
||||
"slogan": "Episode 1: Data exploration",
|
||||
"description": "In this new video series, data science instructor Vincent Warmerdam gets started with spaCy, an open-source library for Natural Language Processing in Python. His mission: building a system to automatically detect programming languages in large volumes of text. Follow his process from the first idea to a prototype all the way to data collection and training a statistical named entity recogntion model from scratch.",
|
||||
"author": "Vincent Warmerdam",
|
||||
"author_links": {
|
||||
"twitter": "fishnets88",
|
||||
"github": "koaning"
|
||||
},
|
||||
"youtube": "WnGPv6HnBok",
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "video-spacy-irl-entity-linking",
|
||||
"title": "Entity Linking functionality in spaCy",
|
||||
"slogan": "spaCy IRL 2019",
|
||||
"url": "https://www.youtube.com/playlist?list=PLBmcuObd5An4UC6jvK_-eSl6jCvP1gwXc",
|
||||
"author": "Sofie Van Landeghem",
|
||||
"author_links": {
|
||||
"twitter": "OxyKodit",
|
||||
"github": "svlandeg"
|
||||
},
|
||||
"youtube": "PW3RJM8tDGo",
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "video-spacy-irl-lemmatization",
|
||||
"title": "Rethinking rule-based lemmatization",
|
||||
"slogan": "spaCy IRL 2019",
|
||||
"url": "https://www.youtube.com/playlist?list=PLBmcuObd5An4UC6jvK_-eSl6jCvP1gwXc",
|
||||
"author": "Guadalupe Romero",
|
||||
"author_links": {
|
||||
"twitter": "_guadiromero",
|
||||
"github": "guadi1994"
|
||||
},
|
||||
"youtube": "88zcQODyuko",
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "video-spacy-irl-scispacy",
|
||||
"title": "ScispaCy: A spaCy pipeline & models for scientific & biomedical text",
|
||||
"slogan": "spaCy IRL 2019",
|
||||
"url": "https://www.youtube.com/playlist?list=PLBmcuObd5An4UC6jvK_-eSl6jCvP1gwXc",
|
||||
"author": "Mark Neumann",
|
||||
"author_links": {
|
||||
"twitter": "MarkNeumannnn",
|
||||
"github": "DeNeutoy"
|
||||
},
|
||||
"youtube": "2_HSKDALwuw",
|
||||
"category": ["videos"]
|
||||
},
|
||||
{
|
||||
"type": "education",
|
||||
"id": "podcast-nlp-highlights",
|
||||
|
|
|
@ -86,6 +86,7 @@ const UniverseContent = ({ content = [], categories, pageContext, location, mdxC
|
|||
<img
|
||||
src={`https://img.youtube.com/vi/${youtube}/0.jpg`}
|
||||
alt=""
|
||||
style={{ clipPath: 'inset(12.5% 0)' }}
|
||||
/>
|
||||
)
|
||||
return cover ? (
|
||||
|
|
Loading…
Reference in New Issue
Block a user